• nn.Parameter和F.linear的用法以及参数初始化方式


    nn.Parameter和F.linear

    class TextRNN(nn.Module):
        def __init__(self, 
                     input_size = 768, 
                     hidden_size = 164,
                     output_size = 768,
                     n_layers = 1,
                     dropout =  0.1,
                     args = None
                     ):
            super(TextRNN, self).__init__()
    
            self.h0 = nn.Parameter(torch.Tensor(n_layers, hidden_size))
            self.c0 = nn.Parameter(torch.Tensor(n_layers, hidden_size))
    
            self.dropout = nn.Dropout(dropout) 
    
            self._activate = nn.Tanh()
        
            # block input
            self.Wz = nn.Parameter(torch.Tensor(input_size, hidden_size))  # [8, 768, 164]
            self.Rz = nn.Parameter(torch.Tensor(hidden_size, hidden_size)) # [8, 164, 164]
            self.bz = nn.Parameter(torch.Tensor(hidden_size, hidden_size)) # [8, 164, 164]
    
            # input gate
            self.Ai = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Wi = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Ri = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
            self.Pi = nn.Parameter(torch.Tensor(n_layers, hidden_size))
            self.bi = nn.Parameter(torch.Tensor(n_layers, hidden_size))
    
            # forget gate
            # input_size = 768, hidden_size = 164
            self.Af = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Wf = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Rf = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
            self.Pf = nn.Parameter(torch.Tensor(n_layers, hidden_size))
            self.bf = nn.Parameter(torch.Tensor(n_layers, hidden_size))
    
            # output gate
            self.Ao = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Wo = nn.Parameter(torch.Tensor(input_size, hidden_size))
            self.Ro = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
            self.Po = nn.Parameter(torch.Tensor(n_layers, hidden_size))
            self.bo = nn.Parameter(torch.Tensor(n_layers, hidden_size))
    
            self.reset_weigths()
    
        def reset_weigths(self):
            """reset weights
            """
            for weight in self.parameters():
                nn.init.xavier_normal_(weight)
    
        def forward(self, input_ids, input_attention):  # [8, 164, 768], [8, 164, 768]
            # input_ids: [8, 164, 768], input_attention: [8, 164, 768]             
            batch_size = input_ids.shape[0]
    
            # [8, 164, 164]  
            z = self._activate(F.linear(input_attention, self.Wz.t()) + torch.mm(self.h0, self.Rz) + self.bz)  
    
            # input_gate
            # [8, 164, 164]
            input_gate = nn.Sigmoid()(F.linear(input_ids, self.Ai.t()) + 
                                    F.linear(input_attention, self.Wi.t()) + torch.mm(self.h0, self.Ri) 
                                    + self.Pi * self.c0 + self.bi
                                )  
            # print(input_gate.shape)
    
            # forget gate
            # [8, 164, 164]
            forget_gate = nn.Sigmoid()(F.linear(input_ids, self.Ai.t()) + 
                                       F.linear(input_attention, self.Wf.t()) + 
                                       torch.mm(self.h0, self.Rf) + 
                                       self.Pf * self.c0 + self.bf)  
            
            # [8, 164, 164]
            new_c = self.c0 * forget_gate + z * input_gate
            # print(new_c.shape)
    
            # output_gate
            # [8, 164, 164]
            output_gate = nn.Sigmoid()(F.linear(input_attention, self.Wo.t()) + 
                                       torch.mm(self.h0, self.Ro) + 
                                       self.Po * self.c0 + self.bo)
    
                   
            # block output
            # [8, 164, 164]
            new_h = output_gate * self._activate(new_c)
    
            return new_h, (new_c, new_h)
    

    nn.Linear实现细节

    import math
    
    import torch
    from torch import Tensor
    from torch.nn.parameter import Parameter
    from .. import functional as F
    from .. import init
    from .module import Module
    
    
    class Identity(Module):
        r"""A placeholder identity operator that is argument-insensitive.
    
        Args:
            args: any argument (unused)
            kwargs: any keyword argument (unused)
    
        Examples::
    
            >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
            >>> input = torch.randn(128, 20)
            >>> output = m(input)
            >>> print(output.size())
            torch.Size([128, 20])
    
        """
        def __init__(self, *args, **kwargs):
            super(Identity, self).__init__()
    
        def forward(self, input: Tensor) -> Tensor:
            return input
    
    
    class Linear(Module):
        r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
    
        This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
    
        Args:
            in_features: size of each input sample
            out_features: size of each output sample
            bias: If set to ``False``, the layer will not learn an additive bias.
                Default: ``True``
    
        Shape:
            - Input: :math:`(N, *, H_{in})` where :math:`*` means any number of
              additional dimensions and :math:`H_{in} = 	ext{in\_features}`
            - Output: :math:`(N, *, H_{out})` where all but the last dimension
              are the same shape as the input and :math:`H_{out} = 	ext{out\_features}`.
    
        Attributes:
            weight: the learnable weights of the module of shape
                :math:`(	ext{out\_features}, 	ext{in\_features})`. The values are
                initialized from :math:`mathcal{U}(-sqrt{k}, sqrt{k})`, where
                :math:`k = frac{1}{	ext{in\_features}}`
            bias:   the learnable bias of the module of shape :math:`(	ext{out\_features})`.
                    If :attr:`bias` is ``True``, the values are initialized from
                    :math:`mathcal{U}(-sqrt{k}, sqrt{k})` where
                    :math:`k = frac{1}{	ext{in\_features}}`
    
        Examples::
    
            >>> m = nn.Linear(20, 30)
            >>> input = torch.randn(128, 20)
            >>> output = m(input)
            >>> print(output.size())
            torch.Size([128, 30])
        """
        __constants__ = ['in_features', 'out_features']
        in_features: int
        out_features: int
        weight: Tensor
    
        def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
            super(Linear, self).__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.weight = Parameter(torch.Tensor(out_features, in_features))
            if bias:
                self.bias = Parameter(torch.Tensor(out_features))
            else:
                self.register_parameter('bias', None)
            self.reset_parameters()
    
        def reset_parameters(self) -> None:
            init.kaiming_uniform_(self.weight, a=math.sqrt(5))
            if self.bias is not None:
                fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
                bound = 1 / math.sqrt(fan_in)
                init.uniform_(self.bias, -bound, bound)
    
        def forward(self, input: Tensor) -> Tensor:
            return F.linear(input, self.weight, self.bias)
    
        def extra_repr(self) -> str:
            return 'in_features={}, out_features={}, bias={}'.format(
                self.in_features, self.out_features, self.bias is not None
            )
    
    
    # This class exists solely for Transformer; it has an annotation stating
    # that bias is never None, which appeases TorchScript
    class _LinearWithBias(Linear):
        bias: Tensor
    
        def __init__(self, in_features: int, out_features: int) -> None:
            super().__init__(in_features, out_features, bias=True)
    
    
    class Bilinear(Module):
        r"""Applies a bilinear transformation to the incoming data:
        :math:`y = x_1^T A x_2 + b`
    
        Args:
            in1_features: size of each first input sample
            in2_features: size of each second input sample
            out_features: size of each output sample
            bias: If set to False, the layer will not learn an additive bias.
                Default: ``True``
    
        Shape:
            - Input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=	ext{in1\_features}` and
              :math:`*` means any number of additional dimensions. All but the last dimension
              of the inputs should be the same.
            - Input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=	ext{in2\_features}`.
            - Output: :math:`(N, *, H_{out})` where :math:`H_{out}=	ext{out\_features}`
              and all but the last dimension are the same shape as the input.
    
        Attributes:
            weight: the learnable weights of the module of shape
                :math:`(	ext{out\_features}, 	ext{in1\_features}, 	ext{in2\_features})`.
                The values are initialized from :math:`mathcal{U}(-sqrt{k}, sqrt{k})`, where
                :math:`k = frac{1}{	ext{in1\_features}}`
            bias:   the learnable bias of the module of shape :math:`(	ext{out\_features})`.
                    If :attr:`bias` is ``True``, the values are initialized from
                    :math:`mathcal{U}(-sqrt{k}, sqrt{k})`, where
                    :math:`k = frac{1}{	ext{in1\_features}}`
    
        Examples::
    
            >>> m = nn.Bilinear(20, 30, 40)
            >>> input1 = torch.randn(128, 20)
            >>> input2 = torch.randn(128, 30)
            >>> output = m(input1, input2)
            >>> print(output.size())
            torch.Size([128, 40])
        """
        __constants__ = ['in1_features', 'in2_features', 'out_features']
        in1_features: int
        in2_features: int
        out_features: int
        weight: Tensor
    
        def __init__(self, in1_features: int, in2_features: int, out_features: int, bias: bool = True) -> None:
            super(Bilinear, self).__init__()
            self.in1_features = in1_features
            self.in2_features = in2_features
            self.out_features = out_features
            self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features))
    
            if bias:
                self.bias = Parameter(torch.Tensor(out_features))
            else:
                self.register_parameter('bias', None)
            self.reset_parameters()
    
        def reset_parameters(self) -> None:
            bound = 1 / math.sqrt(self.weight.size(1))
            init.uniform_(self.weight, -bound, bound)
            if self.bias is not None:
                init.uniform_(self.bias, -bound, bound)
    
        def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
            return F.bilinear(input1, input2, self.weight, self.bias)
    
        def extra_repr(self) -> str:
            return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
                self.in1_features, self.in2_features, self.out_features, self.bias is not None
            )
    
    # TODO: PartialLinear - maybe in sparse?
    
  • 相关阅读:
    Log4j2_java日志使用
    Log4j_java日志使用
    DB_常用知识
    Oracle_内置信息
    Loadrunner使用时IE浏览器打不开怎么办
    性能测试
    python条件语句及循环语句
    计算机网络
    单元测试
    边界条件测试
  • 原文地址:https://www.cnblogs.com/douzujun/p/14735584.html
Copyright © 2020-2023  润新知