Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example, Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; left = null; right = null; } * } */
public class Solution { public ArrayList<TreeNode> generateTree(int start, int end) { ArrayList<TreeNode> result = new ArrayList<TreeNode>(); if (start > end) { result.add(null); return result; } ArrayList<TreeNode> leftTree = new ArrayList<TreeNode>(); ArrayList<TreeNode> rightTree = new ArrayList<TreeNode>(); for (int i = start; i <= end; i++) { //从start到end,选取每一个数尝试构造BST leftTree = generateTree(start, i-1); //取小于i的数构造i的左子树 rightTree = generateTree(i+1, end); //取大于i的数构造i的右子树,以此来保证i的二叉查找树有序性 for (int j = 0; j < leftTree.size(); j++) { for (int k = 0; k < rightTree.size(); k++) { //取i作为root构造BST,共有num_left*num_right种方式 TreeNode curNode = new TreeNode(i + 1); curNode.left = leftTree.get(j); //left、right是递归得到的root的集合,相当于list的每个节点都是一颗二叉查找树 curNode.right = rightTree.get(k); //将每一种可能的组合,接到当前的root(i)上组成一颗BST result.add(curNode); } } } return result; } //主调用函数:返回的List是每一棵树的root的集合,List.length = n的二叉搜索树的个数 public ArrayList<TreeNode> generateTrees(int n) { return generateTree(0, n-1); } }