• 莫比乌斯反演


    定理:F(n)和f(n)是定义在非负整数集合上的两个函数,并且满足条件[{ m{F(n)}} = sumlimits_{{ m{d|n}}}^{} {{ m{f}}(d)}
    % MathType!MTEF!2!1!+-
    % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
    % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
    % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr
    % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs
    % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai
    % aabeqaamaabaabauaakeaacaqGgbGaaeikaiaab6gacaqGPaGaeyyp
    % a0ZaaabCaeaacaqGMbGaaiikaiaadsgacaGGPaaaleaacaqGKbGaae
    % iFaiaab6gaaeaaa0GaeyyeIuoaaaa!4B7C!
    ],那么我们得到结论
    [f(n) = sumlimits_{d|n}^{} {mu (d)F(frac{n}{d})}
    % MathType!MTEF!2!1!+-
    % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
    % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
    % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr
    % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs
    % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai
    % aabeqaamaabaabauaakeaacaWGMbGaaiikaiaad6gacaGGPaGaeyyp
    % a0ZaaabCaeaacqaH8oqBcaGGOaGaamizaiaacMcacaWGgbGaaiikam
    % aalaaabaGaamOBaaqaaiaadsgaaaGaaiykaaWcbaGaamizaiaacYha
    % caWGUbaabaaaniabggHiLdaaaa!5084!
    ]

    根据F(n)的定义我们可以得出:

    • F(1)=f(1)
    • F(2)=f(1)+f(2)
    • F(3)=f(1)+f(3)
    • F(4)=f(1)+f(2)+f(4)
    • F(5)=f(1)+f(5)
    • F(6)=f(1)+f(2)+f(3)+f(6)
    • F(7)=f(1)+f(7)
    • F(8)=f(1)+f(2)+f(4)+f(8)

    于是可以推导出f(n):

    • f(1)=F(1)
    • f(2)=F(2)-F(1)
    • f(3)=F(3)-F(1)
    • f(4)=F(4)-F(2)
    • f(5)=F(5)-F(1)
    • f(6)=F(6)-F(3)-F(2)+F(1)
    • f(7)=F(7)-F(1)
    • f(8)=F(8)-F(4)

    可以得到公式:[F(n) = sumlimits_{d|n}^{} {f(d)}  Rightarrow f(n) = sumlimits_{d|n}^{} {mu (d)F(frac{n}{d})}
    % MathType!MTEF!2!1!+-
    % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
    % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
    % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr
    % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs
    % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai
    % aabeqaamaabaabauaakeaacaWGgbGaaiikaiaad6gacaGGPaGaeyyp
    % a0ZaaabCaeaacaWGMbGaaiikaiaadsgacaGGPaaaleaacaWGKbGaai
    % iFaiaad6gaaeaaa0GaeyyeIuoakiabgkDiElaadAgacaGGOaGaamOB
    % aiaacMcacqGH9aqpdaaeWbqaaiabeY7aTjaacIcacaWGKbGaaiykai
    % aadAeacaGGOaWaaSaaaeaacaWGUbaabaGaamizaaaacaGGPaaaleaa
    % caWGKbGaaiiFaiaad6gaaeaaa0GaeyyeIuoaaaa!5F53!
    ]

    其中μ(d)为莫比乌斯函数

    μ(d)的性质:[mu (d) = left{ egin{array}{l}1,d = 1\{( - 1)^k},d = {p_1}*{p_2}*...{p_k}\0,end{array} ight.
    % MathType!MTEF!2!1!+-
    % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
    % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
    % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr
    % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs
    % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai
    % aabeqaamaabaabauaakeaacqaH8oqBcaGGOaGaamizaiaacMcacqGH
    % 9aqpdaGabaabaeqabaGaaGymaiaacYcacaWGKbGaeyypa0JaaGymaa
    % qaaiaacIcacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaam4Aaaaa
    % kiaacYcacaWGKbGaeyypa0JaamiCamaaBaaaleaacaaIXaaabeaaki
    % aacQcacaWGWbWaaSbaaSqaaiaaikdaaeqaaOGaaiOkaiaac6cacaGG
    % UaGaaiOlaiaadchadaWgaaWcbaGaam4AaaqabaaakeaacaaIWaGaai
    % ilaaaacaGL7baaaaa!5AE1!
    ]

    (其中p1-pk为互异素数。)
    [egin{gathered}
      sumlimits_{d|n} {mu (d)}  = left{ egin{gathered}
      1{ ext{     }}(n = 1) hfill \
      0{ ext{     }}(n > 1) hfill \
    end{gathered}  ight. hfill \
      sumlimits_{d|n} {frac{{mu (d)}}{d}}  = frac{{varphi (n)}}{n} hfill \
    end{gathered} ]

    用线性筛求莫比乌斯函数值:

    const int maxn=1e5+7;
    bool vis[maxn];
    int prime[maxn],mu[maxn];
    int cnt;
    void Init(int N)///线性筛求莫比乌斯函数的值
    {
        //int N=maxn;
        memset(vis,0,sizeof(vis));
        mu[1] = 1;
        cnt = 0;
        for(int i=2; i<N; i++)
        {
            if(!vis[i])
            {
                prime[cnt++] = i;
                mu[i] = -1;
            }
            for(int j=0; j<cnt&&i*prime[j]<N; j++)
            {
                vis[i*prime[j]] = 1;
                if(i%prime[j]) mu[i*prime[j]] = -mu[i];
                else
                {
                    mu[i*prime[j]] = 0;
                    break;
                }
            }
        }
    }
    

     例题:hdu-1695

    代码:

    #include <iostream>
    #include <algorithm>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    const int mod=10001;
    
    int gcd(int a,int b){return (b==0)?a:gcd(b,a%b);}
    const int maxn=1e5+7; bool vis[maxn]; int prime[maxn],mu[maxn]; int cnt; void Init(int N)///线性筛求莫比乌斯函数的值 { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0; j<cnt&&i*prime[j]<N; j++) { vis[i*prime[j]] = 1; if(i%prime[j]) mu[i*prime[j]] = -mu[i]; else { mu[i*prime[j]] = 0; break; } } } } int main() { int t; cin>>t;//int T=t; Init(100000); for(int i=1;i<=t;i++){ ll res1=0,res2=0; ll a,b,c,d,k; cin>>a>>b>>c>>d>>k; if(b>d)swap(b,d); if(k==0){ printf("Case %d: 0 ",i);continue; } b=b/k;d=d/k; for(int j=1;j<=b;j++){ res1+=mu[j]*(b/j)*(d/j); } for(int j=1;j<=b;j++){ res2+=mu[j]*(b/j)*(b/j); } printf("Case %d: %lld ",i,res1-res2/2); } }
  • 相关阅读:
    438. Find All Anagrams in a String
    406. Queue Reconstruction by Height
    581. Shortest Unsorted Continuous Subarray
    416. Partition Equal Subset Sum
    124. Binary Tree Maximum Path Sum
    240. Search a 2D Matrix II
    160. Intersection of Two Linked Lists
    6. ZigZag Conversion
    iOS tableView 数据处理,数据分类相同数据整合、合并计算总数总价
    iOS 讯飞语音测试没问题,一上线就用不了了
  • 原文地址:https://www.cnblogs.com/donke/p/10383087.html
Copyright © 2020-2023  润新知