• 基于混沌序列的量子粒子群算法


    参考文献:

      量子行为粒子群优化算法研究[D], 孙俊

    #include <iostream>
    #include <math.h>
    #include <time.h>
    using namespace std;
    
    #define M 50  //群体数目50
    #define N 4   //每个粒子的维数4
    #define NN 500 //整体迭代次数
    #define chaotic_count 3    //判断是否进入停滞状态
    #define gama 0.001      
    #define R 0.8
    #define chaotic_counts 100   //混沌搜索的迭代次数
    //测试类
    class TestFunction
    {
        public:
            double resen(double x1,double x2,double x3,double x4)
            {
                double s=0;
                s=100*(x2-x1*x1)*(x2-x1*x1)+(1-x1)*(1-x1)+s;
                s=100*(x3-x2*x2)*(x3-x2*x2)+(1-x2)*(1-x2)+s;
                s=100*(x4-x3*x3)*(x4-x3*x3)+(1-x3)*(1-x3)+s;
                return s;
            }
    };
    
    class CQPSO
    {
        private:
            double delta;
            double (*w)[N];// = new double[50][4]; //总体粒子
            double *f;//=new double[M];//适应度值
            double *ff;//=new double[M];//相对f的比较值
            double (*p)[N];//=new double[M][N];
            double *g;//=new double[N];
            double *c;//=new double[N];
            int flag;//=0;
            TestFunction *tf;// = new TestFunction;
            double random()
            {
                double s;
                s=(abs(rand())%10000+10000)/10000.0-1.0;    
                return s;
            }
        public:
            CQPSO(double delta)
            {
                int i,j;
                this->delta=delta;
                w=new double[M][N];
                f=new double[M];
                ff=new double[M];
                p=new double[M][N];
                g=new double[N];
                c=new double[N];
                tf=new TestFunction;
                flag=0;
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                    {
                        w[i][j]=random();
                    }
                }
                
            }
    
            void CQPSOmethod(int count)
            {
                int i,j;
                bool b;
                if(count==1)
                {
                    for(i=0;i<M;i++)
                    {
                        for(j=0;j<N;j++)
                        {
                            p[i][j]=w[i][j];
                        }
                        f[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                    }
                    cqpso_p();//f);//得出全局最优
                }
    
                if(count>1)
                {
                    cqpso_update( );//w );
                    for(i=0;i<M;i++)
                    {
                        ff[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                        if(ff[i]<f[i])
                        {    
                            f[i]=ff[i];
                            for(j=0;j<N;j++) p[i][j]=w[i][j];
                        }
                    }
                    cqpso_p();//f);
                    b=chaotic_whether( );
                    if(b==true)
                        flag=flag+1;
                    else flag=0;
                    
                    if(flag==chaotic_count)
                    {
                        chaotic();
                        flag=0;
                    }
                }
                cout<<(tf->resen(g[0],g[1],g[2],g[3]))<<endl;
            }
    
    
    
            void cqpso_p()//double *f)//得到个体最优中最小值——全局最优
            {
                double temp=f[0];
                int i,j;
                for(i=1;i<M;i++)
                {
                    if(f[i]<temp)
                    {
                        temp=f[i];
                    }
                }
                for(i=0;i<M;i++)
                {
                    if(temp==f[i])
                    {
                        for(j=0;j<N;j++)
                        {
                            g[j]=p[i][j];
                        }
                        break;
                    }
                }
            }    
            void cqpso_c()//double (*p)[N])
            {
                int i,j;
                for(i=0;i<N;i++)  c[i]=0;
                for(i=0;i<N;i++)
                {
                    for(j=0;j<M;j++)
                    {
                        c[i]=c[i]+p[j][i];
                    }
                }
                for(i=0;i<N;i++) c[i]=c[i]/M;
            }
    
            void cqpso_update( )//double (*w)[N] )
            {
                int i,j;
                double *fai=new double[N];
                double (*u)[N]=new double[M][N];
                double (*pp)[N]=new double[M][N];
                for(i=0;i<N;i++)
                {
                    fai[i]=random();
                }
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                        u[i][j]=random();
                }
                cqpso_c( );//p );
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                        pp[i][j]=fai[j]*p[i][j]+g[j]*(1-fai[j]);
                }
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                        w[i][j]=pp[i][j]+delta*(abs(c[j]-w[i][j]))*log(1/u[i][j]);
                }
            }
    
            //混沌搜索核心算法
            void chaotic()
            {
                int i,j;
                double *y=new double[N];
                double *yy=new double[N];
                double *yyy=new double[N];
                double f_chaotic;//*f_chaotic=new double[chaotic_counts];
                double ff_chaotic;
                for(i=0;i<N;i++)
                {
                    y[i]=random();
                }
                for(j=1;j<chaotic_counts;j++)
                {
                    if(j==1)
                    {
                        for(i=0;i<N;i++)
                        {
                            yy[i]=g[i]+R*(2*y[i]-1);
                        }
                        f_chaotic=tf->resen(yy[0],yy[1],yy[2],yy[3]);
                        for(i=0;i<N;i++)
                        {
                            yyy[i]=y[i];
                        }
                    }
                    if(j>1)
                    {
                        for(i=0;i<N;i++)
                        {
                            y[i]=4*y[i]*(1-y[i]);
                        }
                        for(i=0;i<N;i++)
                        {
                            yy[i]=g[i]+R*(2*y[i]-1);
                        }
                        ff_chaotic=tf->resen(yy[0],yy[1],yy[2],yy[3]);
                        if(ff_chaotic<f_chaotic)
                        {
                            f_chaotic=ff_chaotic;
                            for(i=0;i<N;i++)
                            {
                                yyy[i]=y[i];
                            }
    
                        }
                    }
    
                }
                
                if(f_chaotic<(tf->resen(g[0],g[1],g[2],g[3])))
                {
                    for(i=0;i<N;i++)
                    {
                        g[i]=yyy[i];
                    }
                }
                
            }
    
           //判断是否进入混沌状态
            bool chaotic_whether( )
            {
                double Fbest;
                Fbest=tf->resen(g[0],g[1],g[2],g[3]);
                double temp=ff[0];
                int i;//,j;
                for(i=1;i<M;i++)
                {
                    if(ff[i]<temp)
                    {
                        temp=ff[i];
                    }
                }
                if(((temp-Fbest)/temp)<gama)
                    return true;
                else return false;
            }
        
    };
    
    int main()
    {
        int i;
        srand((unsigned)time(0)); 
        CQPSO *qo = new CQPSO(0.5);
        //qo->w=new double[M][N];
        for(i=1;i<NN;i++)
        qo->CQPSOmethod(i);
    }
  • 相关阅读:
    B树,B+树
    中断
    死锁
    无锁队列
    Cookie和Session
    分布式系统一致性
    c++ 标准库迭代器失效
    html5 app图片预加载
    html5 手机APP计算高度问题
    html5 750 REM JS换算方法
  • 原文地址:https://www.cnblogs.com/dongzhuangdian/p/5151918.html
Copyright © 2020-2023  润新知