• spark-streaming-kafka-0-10源码分析


    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/7767621.html  

    本文所研究的spark-streaming代码版本为2.3.0-SNAPSHOT

     spark-streaming为了匹配0.10以后版本的kafka客户端变化推出了一个目前还是Experimental状态的spark-streaming-kafka-0-10客户端,由于老的0.8版本无法支持kerberos权限校验,需要研究下spark-streaming-kafka-0-10的源码实现以及系统架构。

     首先看下初始化kafkastream的方法声明,

    def createDirectStream[K, V](
    ssc: StreamingContext,
    locationStrategy: LocationStrategy,
    consumerStrategy: ConsumerStrategy[K, V],
    perPartitionConfig: PerPartitionConfig
    ): InputDStream[ConsumerRecord[K, V]] = {
    new DirectKafkaInputDStream[K, V](ssc, locationStrategy, consumerStrategy, perPartitionConfig)
    }

    DirectKafkaInputDStream的初始化参数包括StreamingContext,LocationStrategy,ConsumerStrategy和perPartitionConfig,根据源码文档locationStrategy一般采用PreferConsistent

    ,perPartitionConfig一般采用默认实现,这里不做研究,主要会有点区别的参数为consumerStrategy,它的作用会在下面的源码分析里展示出来。

    一  driver consumer

    JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils
                    .createDirectStream(jssc,
                            LocationStrategies.PreferConsistent(),
                            ConsumerStrategies.<String, String> Subscribe(topics,
                                    kafkaParams));
    View Code

    以上述初始化代码为例,首先DirectKafkaInputDStream会调用start方法进行初始化,相关代码如下

      override def start(): Unit = {
        val c = consumer //初始化driver端consumer
        paranoidPoll(c)  //调整offset位置
        if (currentOffsets.isEmpty) {
          currentOffsets = c.assignment().asScala.map { tp =>
            tp -> c.position(tp)
          }.toMap
        }
    
        // don't actually want to consume any messages, so pause all partitions
        c.pause(currentOffsets.keySet.asJava)
      }
    View Code

     这段代码在driver端初始化一个consumer, 该consumer的类型由上面提到的consumerStrategy决定,Subscribe类的实现如下,相当与在driver端启动一个以subscribe模式订阅topic的客户端。在有初始启动offset传入的情况下会把consumer的offset游标seek到对应的地址。 

    private case class Subscribe[K, V](
        topics: ju.Collection[jl.String],
        kafkaParams: ju.Map[String, Object],
        offsets: ju.Map[TopicPartition, jl.Long]
      ) extends ConsumerStrategy[K, V] with Logging {
    
      def executorKafkaParams: ju.Map[String, Object] = kafkaParams
    
      def onStart(currentOffsets: ju.Map[TopicPartition, jl.Long]): Consumer[K, V] = {
        val consumer = new KafkaConsumer[K, V](kafkaParams)
        consumer.subscribe(topics)
        val toSeek = if (currentOffsets.isEmpty) {
          offsets
        } else {
          currentOffsets
        }
        if (!toSeek.isEmpty) {
          // work around KAFKA-3370 when reset is none
          // poll will throw if no position, i.e. auto offset reset none and no explicit position
          // but cant seek to a position before poll, because poll is what gets subscription partitions
          // So, poll, suppress the first exception, then seek
          val aor = kafkaParams.get(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG)
          val shouldSuppress =
            aor != null && aor.asInstanceOf[String].toUpperCase(Locale.ROOT) == "NONE"
          try {
            consumer.poll(0)
          } catch {
            case x: NoOffsetForPartitionException if shouldSuppress =>
              logWarning("Catching NoOffsetForPartitionException since " +
                ConsumerConfig.AUTO_OFFSET_RESET_CONFIG + " is none.  See KAFKA-3370")
          }
          toSeek.asScala.foreach { case (topicPartition, offset) =>
              consumer.seek(topicPartition, offset)
          }
          // we've called poll, we must pause or next poll may consume messages and set position
          consumer.pause(consumer.assignment())
        }
    
        consumer
      }
    }
    View Code

    DirectKafkaInputDStream的另一个核心方法是compute,这个方法的核心作用之一就是不断地生成对应时间的RDD分配到新的job计算任务,具体实现如下,主要是根据系统设置的限速和现有

    kafka topicpartion计算出每一个job分配到的KafkaRDD对应的数据范围以及提交offset等工作。

      override def compute(validTime: Time): Option[KafkaRDD[K, V]] = {
        val untilOffsets = clamp(latestOffsets()) //根据maxrate和backpressuce等限速配置计算下一批rdd每个里面kafka消息的截止offset
        val offsetRanges = untilOffsets.map { case (tp, uo) =>
          val fo = currentOffsets(tp)
          OffsetRange(tp.topic, tp.partition, fo, uo)
        }//初始化offset列表,包括(topic,partition,起始offset,截止offset)
        val useConsumerCache = context.conf.getBoolean("spark.streaming.kafka.consumer.cache.enabled",
          true)
        val rdd = new KafkaRDD[K, V](context.sparkContext, executorKafkaParams, offsetRanges.toArray,
          getPreferredHosts, useConsumerCache)//根据计算好的offsetRange和修改后的kafkaParam初始化RDD
    
        // Report the record number and metadata of this batch interval to InputInfoTracker.
        val description = offsetRanges.filter { offsetRange =>
          // Don't display empty ranges.
          offsetRange.fromOffset != offsetRange.untilOffset
        }.map { offsetRange =>
          s"topic: ${offsetRange.topic}	partition: ${offsetRange.partition}	" +
            s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"
        }.mkString("
    ")
        // Copy offsetRanges to immutable.List to prevent from being modified by the user
        val metadata = Map(
          "offsets" -> offsetRanges.toList,
          StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)
        val inputInfo = StreamInputInfo(id, rdd.count, metadata)
        ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
    
        currentOffsets = untilOffsets
        commitAll()
        Some(rdd)
      }

     注意上文里的latestOffset()方法实现如下,通过新的consumerapi的c.seekToEnd(currentOffsets.keySet.asJava)将consumer的offsetapi游标放到了对应分区的最后位置,

    如果在初始化的kafkaParams设置"enable.auto.commit"属性为"true",diver客户端会自动像kafka发送最后seek到的offset位置

      protected def latestOffsets(): Map[TopicPartition, Long] = {
        val c = consumer
        paranoidPoll(c)
        val parts = c.assignment().asScala
    
        // make sure new partitions are reflected in currentOffsets
        val newPartitions = parts.diff(currentOffsets.keySet)
        // position for new partitions determined by auto.offset.reset if no commit
        currentOffsets = currentOffsets ++ newPartitions.map(tp => tp -> c.position(tp)).toMap
        // don't want to consume messages, so pause
        c.pause(newPartitions.asJava)
        // find latest available offsets
        c.seekToEnd(currentOffsets.keySet.asJava)
        parts.map(tp => tp -> c.position(tp)).toMap
      }

     二  executor consumer

    executor consumer的初始化过程位于KafkaRDD内部,在程序初始的kafaparams基础上调用了fixKfkaParams方法对参数进行了部分调整和改写,包括groupid,enable.auto.commit,auto.offset.config等属性。

      private[kafka010] def fixKafkaParams(kafkaParams: ju.HashMap[String, Object]): Unit = {
        logWarning(s"overriding ${ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG} to false for executor")
        kafkaParams.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false: java.lang.Boolean)
    
        logWarning(s"overriding ${ConsumerConfig.AUTO_OFFSET_RESET_CONFIG} to none for executor")
        kafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "none")
    
        // driver and executor should be in different consumer groups
        val originalGroupId = kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG)
        if (null == originalGroupId) {
          logError(s"${ConsumerConfig.GROUP_ID_CONFIG} is null, you should probably set it")
        }
        val groupId = "spark-executor-" + originalGroupId
        logWarning(s"overriding executor ${ConsumerConfig.GROUP_ID_CONFIG} to ${groupId}")
        kafkaParams.put(ConsumerConfig.GROUP_ID_CONFIG, groupId)
    
        // possible workaround for KAFKA-3135
        val rbb = kafkaParams.get(ConsumerConfig.RECEIVE_BUFFER_CONFIG)
        if (null == rbb || rbb.asInstanceOf[java.lang.Integer] < 65536) {
          logWarning(s"overriding ${ConsumerConfig.RECEIVE_BUFFER_CONFIG} to 65536 see KAFKA-3135")
          kafkaParams.put(ConsumerConfig.RECEIVE_BUFFER_CONFIG, 65536: java.lang.Integer)
        }
      }

     KafkaRDD内部与consumer相关的几个方法如下:首先通过getPartitions方法将对应的topic分区与RDD的每一个分区对应起来,然后通过compute方法初始化KafkaRDDIterator,每个KafkaRDDIterator通过CachedKafkaConsumer接口拿到一个CachedKafkaConsumer引用并在next()方法里不断返回ConsumerRecord值。

      override def getPartitions: Array[Partition] = {
        offsetRanges.zipWithIndex.map { case (o, i) =>
            new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset)
        }.toArray
      }
    
    override def compute(thePart: Partition, context: TaskContext): Iterator[ConsumerRecord[K, V]] = {
        val part = thePart.asInstanceOf[KafkaRDDPartition]
        assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))
        if (part.fromOffset == part.untilOffset) {
          logInfo(s"Beginning offset ${part.fromOffset} is the same as ending offset " +
            s"skipping ${part.topic} ${part.partition}")
          Iterator.empty
        } else {
          new KafkaRDDIterator(part, context)
        }
      }
    
    
      private class KafkaRDDIterator(
          part: KafkaRDDPartition,
          context: TaskContext) extends Iterator[ConsumerRecord[K, V]] {
    
        logInfo(s"Computing topic ${part.topic}, partition ${part.partition} " +
          s"offsets ${part.fromOffset} -> ${part.untilOffset}")
    
        val groupId = kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG).asInstanceOf[String]
    
        context.addTaskCompletionListener{ context => closeIfNeeded() }
    
        val consumer = if (useConsumerCache) {
          CachedKafkaConsumer.init(cacheInitialCapacity, cacheMaxCapacity, cacheLoadFactor)
          if (context.attemptNumber >= 1) {
            // just in case the prior attempt failures were cache related
            CachedKafkaConsumer.remove(groupId, part.topic, part.partition)
          }
          CachedKafkaConsumer.get[K, V](groupId, part.topic, part.partition, kafkaParams)
        } else {
          CachedKafkaConsumer.getUncached[K, V](groupId, part.topic, part.partition, kafkaParams)
        }
    
        var requestOffset = part.fromOffset
    
        def closeIfNeeded(): Unit = {
          if (!useConsumerCache && consumer != null) {
            consumer.close
          }
        }
    
        override def hasNext(): Boolean = requestOffset < part.untilOffset
    
        override def next(): ConsumerRecord[K, V] = {
          assert(hasNext(), "Can't call getNext() once untilOffset has been reached")
          val r = consumer.get(requestOffset, pollTimeout)
          requestOffset += 1
          r
        }
      }

    根据是否使用consumer的缓存池特性(这个属性由spark.streaming.kafka.consumer.cache.enabled决定),CachedKafkaConsumer提供了两种静态方法获取consumer客户端,get()和getUncached()。

    get方法从CachedKafkaConsumer的静态linkhashmap属性cache中存取已经初始化好的CachedKafkaConsumer对象,相当于每个executor内部维护了一个consumer的连接池。

    getUncached相当于每次拉新数据都初始化一个consumer连接,并在这个RDD任务结束后关掉consumer实例。

    CachedKafkaConsumer初始化kafka consumer客户端的相关代码如下,可以看到真正拉数据的executor客户端是采用了assgin方式订阅到单个分区初始化完成的。

      protected val consumer = {
        val c = new KafkaConsumer[K, V](kafkaParams)
        val tps = new ju.ArrayList[TopicPartition]()
        tps.add(topicPartition)
        c.assign(tps)
        c
      }

    三 offset提交

     除了上文提到的将driver端的auto.commit属性打开提交offset的方式以外,sparkstreaming还在DirectKafkaInputDStream中提供了一个commitAsync(offsetRanges: Array[OffsetRange], callback: OffsetCommitCallback)方法允许手动触发offset提交,这个方法将需要提交的offset列表放到了一个commitQueue里面,然后在每次调用compute方法的时候最后的commitall方法通过driver端的consumer把offset提交到kafka上。

      def commitAsync(offsetRanges: Array[OffsetRange], callback: OffsetCommitCallback): Unit = {
        commitCallback.set(callback)
        commitQueue.addAll(ju.Arrays.asList(offsetRanges: _*))
      }
    
      protected def commitAll(): Unit = {
        val m = new ju.HashMap[TopicPartition, OffsetAndMetadata]()
        var osr = commitQueue.poll()
        while (null != osr) {
          val tp = osr.topicPartition
          val x = m.get(tp)
          val offset = if (null == x) { osr.untilOffset } else { Math.max(x.offset, osr.untilOffset) }
          m.put(tp, new OffsetAndMetadata(offset))
          osr = commitQueue.poll()
        }
        if (!m.isEmpty) {
          consumer.commitAsync(m, commitCallback.get)
        }
      }
    stream.foreachRDD(rdd -> {
      OffsetRange[] offsetRanges = ((HasOffsetRanges) rdd.rdd()).offsetRanges();
    
      // some time later, after outputs have completed
      ((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges);
    });

    注意:如果是采用官方文档里上述方式手动提交offset,需要把stream对象的属性标记为static或者transient避免序列化,不然可能在任务提交的时候报DirectKafkaInputDStream 无法序列化导致Task not serializable错误

    结论

    新的spark-streaming-kafka-0-10客户端采用了与原有版本完全不同的架构,一个job里面运行了两组consumer:driver consumer和 executor consumer,driver端consumer负责分配和提交offset到初始化好的KafkaRDD当中去,KafkaRDD内部会根据分配到的每个topic的每个partition初始化一个CachedKafkaConsumer客户端通过assgin的方式订阅到topic拉取数据。

  • 相关阅读:
    零点起飞学Word与Excel高效办公实战与技巧
    C语言核心技术(原书第2版)
    完全精通Nuendo电脑音乐及音频制作:精细操作与实践指南
    1035.找出直系亲属(floyd)
    1033.继续XXX定律
    1034.寻找大富翁
    1032.ZOJ问题
    1029.魔咒词典
    1031.XXX定律
    1028.继续畅通工程
  • 原文地址:https://www.cnblogs.com/dongxiao-yang/p/7767621.html
Copyright © 2020-2023  润新知