• HDOJ1028Ignatius and the Princess III(整数划分的母函数做法)


    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9077    Accepted Submission(s): 6389


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4 10 20
     
    Sample Output
    5 42 627
    代码一:-----母函数解法:
    构造母函数如下:
      G(x)=(1+x+x^2+x^3+...+x^n)*(1+x^2+x^4+...)*(1+x^3+x^6+...)*...*(1+x^n);
     1 #include <cstdio>
     2 #include <iostream>
     3 
     4 using namespace std;
     5 
     6 int main()
     7 {
     8     int n;
     9     int c1[125], c2[125];
    10     
    11     while(~scanf("%d", &n))
    12     {
    13         for(int i = 0; i <= n; ++i)
    14         {
    15             c1[i] = 1; 
    16             c2[i] = 0;
    17         }
    18         for(int i = 2; i <= n; ++i)
    19         {
    20             for(int j = 0; j <= n; ++j)
    21             {
    22                 for(int k = 0; k <= n/i*i; k += i)
    23                     c2[j+k] += c1[j];
    24             }
    25             for(int j = 0; j <= n; ++j)
    26             {
    27                 c1[j] = c2[j];
    28                 c2[j] = 0;
    29             }
    30         }
    31         printf("%d\n", c1[n]);
    32     }
    33     return 0;
    34 }

    代码二:递归做法:

     1 #include <cstdio>
     2 #include <iostream>
     3 
     4 using namespace std;
     5 int f[125][125];
     6 
     7 int fun(int a, int b) // fun(n, m)表示将整数 n 划分为最大数不超过 m 的划分
     8 {
     9     if(f[a][b])
    10         return f[a][b];
    11     if(a == 1 || b == 1)
    12         return 1;
    13     if(a < b)
    14         return f[a][b] = fun(a, a);
    15     if(a == b)
    16         return f[a][b] = 1 + fun(a, b-1);
    17     if(a > b)
    18         return f[a][b] = fun(a-b, b) + fun(a, b-1); 
    19 }
    20 
    21 int main()
    22 {
    23     int n;
    24     memset(f, 0, sizeof(f));
    25     while(~scanf("%d", &n))
    26     {
    27         printf("%d\n", fun(n, n));
    28     }
    29     return 0;
    30 }
  • 相关阅读:
    coursera 《现代操作系统》 -- 第五周 同步机制(2)
    coursera 《现代操作系统》 -- 第五周 同步机制(1)
    coursera 《现代操作系统》 -- 第四周 处理器调度
    coursera 《现代操作系统》
    路由器WAN端与LAN端的区别
    如何查看与刷新DNS本地缓存
    国内外常用的DNS服务器
    PPPOE协议
    WDS 的两种实现方式
    wifi基础知识整理
  • 原文地址:https://www.cnblogs.com/dongsheng/p/3046582.html
Copyright © 2020-2023  润新知