R(N)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1412 Accepted Submission(s):
729
Problem Description
We know that some positive integer x can be expressed
as x=A^2+B^2(A,B are integers). Take x=10 for example,
10=(-3)^2+1^2.
We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1)=4, which consists of 1=1^2+0^2, 1=(-1)^2+0^2, 1=0^2+1^2, 1=0^2+(-1)^2.Given N, you are to calculate R(N).
10=(-3)^2+1^2.
We define R(N) (N is positive) to be the total number of variable presentation of N. So R(1)=4, which consists of 1=1^2+0^2, 1=(-1)^2+0^2, 1=0^2+1^2, 1=0^2+(-1)^2.Given N, you are to calculate R(N).
Input
No more than 100 test cases. Each case contains only
one integer N(N<=10^9).
Output
For each N, print R(N) in one line.
Sample Input
2
6
10
25
65
Sample Output
4
0
8
12
16
Hint
For the fourth test case, (A,B) can be (0,5), (0,-5), (5,0), (-5,0), (3,4), (3,-4), (-3,4), (-3,-4), (4,3) , (4,-3), (-4,3), (-4,-3)//求给定整数n可以分解成多少种情况使得n=x^2+y^2(x与y均为整数) #include<stdio.h> #include<math.h> int main() { int k,i,j,n,ans; while(~scanf("%d",&n)) { if(!n) { printf("1\n"); continue; } ans=0; k=(int)sqrt(n/2.0); for(i=0;i<=k;++i) { j=(int)sqrt(n-i*i); if(i*i+j*j==n) { if(i==j||i==0||j==0) //其中有一个为0或者x==y时候只有四种情况 ans+=4; else ans+=8; //x与y不为0且不相等的时候有8种情况 } } printf("%d\n",ans); } return 0; }