• 逻辑回归 C++


    #include <iostream>
    #include <string>
    #include <fstream>
    #include <sstream>
    #include <vector>
    #include <cmath>

    template <typename DataType>
    double sigmoid(DataType z) {
        return 1.0/(1+exp((-1)*z));
    }

    template <typename DataType, typename WeightType>
    double getMatResult(typename::std::vector<DataType> &data, typename::std::vector<WeightType> &weights) {
        double result=0.0;
        for(size_t i=0;i<data.size();++i) {
            result+=data.at(i)*weights.at(i);
        }
        return result;
    }

    template <typename DataType>
    void DisplayData(typename::std::vector<std::vector<DataType> > &vv) {
        std::cout<<"the number of data: "<<vv.size()<<std::endl;
        for(size_t i=0;i<vv.size();++i) {
            for(typename::std::vector<DataType>::iterator it=vv[i].begin();it!=vv[i].end();++it) {
                std::cout<<*it<<" ";
            }
            std::cout<<std::endl;
        }
    }

    template <typename DataType, typename WeightType>
    double CostFun(typename::std::vector<std::vector<DataType> > &vv, typename::std::vector<WeightType> &v_weights) {
        double J=0.0;
        typename::std::vector<DataType> v_x;
        for(size_t i=0;i<vv.size();++i) {
            v_x.clear();
            v_x.push_back(vv[i][0]);
            v_x.push_back(vv[i][1]);
            v_x.push_back(vv[i][2]);
            double z=getMatResult(v_x,v_weights);
            J=J+vv[i][3]*log2(sigmoid(z))+(1-vv[i][3])*log2(1-sigmoid(z));
        }
        J=-J/vv.size();
        return J;
    }

    int main() {
        std::ifstream infile_feat("train.data");
        std::string feature;
        float feat_onePoint;
        std::vector<float> lines;
        std::vector<double> v_weights;
        std::vector<std::vector<float> > lines_feat;
        lines_feat.clear();
        v_weights.clear();
        for(size_t i=0;i<3;++i) {
            v_weights.push_back(1.0);
        }
        while(!infile_feat.eof()) {
            getline(infile_feat, feature);
            if(feature.empty())
                break;
            std::stringstream stringin(feature);
            lines.clear();
            lines.push_back(1.0);
            while(stringin >> feat_onePoint) {
                lines.push_back(feat_onePoint);
            }
            lines_feat.push_back(lines);
        }
        infile_feat.close();
        std::cout<<"display train data: "<<std::endl;
        DisplayData(lines_feat);
        double res=CostFun(lines_feat, v_weights);
        std::cout<<"the value of cost function: "<<res<<std::endl;
        std::vector<double> v_x;
        while(true) {
            double grad0=0.0,grad1=0.0,grad2=0.0;
            for(size_t i=0;i<lines_feat.size();++i) {
                v_x.clear();
                v_x.push_back(lines_feat[i][0]);
                v_x.push_back(lines_feat[i][1]);
                v_x.push_back(lines_feat[i][2]);
                grad0+=(lines_feat[i][3]-sigmoid(getMatResult(v_x,v_weights)))*lines_feat[i][0];
                grad1+=(lines_feat[i][3]-sigmoid(getMatResult(v_x,v_weights)))*lines_feat[i][1];
                grad2+=(lines_feat[i][3]-sigmoid(getMatResult(v_x,v_weights)))*lines_feat[i][2];
            }
            grad0=grad0/lines_feat.size();
            grad1=grad1/lines_feat.size();
            grad2=grad2/lines_feat.size();

            //0.03为学习率阿尔法
            v_weights[0]=v_weights[0]+0.03*grad0;
            v_weights[1]=v_weights[1]+0.03*grad1;
            v_weights[2]=v_weights[2]+0.03*grad2;

            double res_new;
            res_new=CostFun(lines_feat,v_weights);
            if(std::abs(res_new-res)<0.0000000001)
                break;
            res=res_new;
        }
        for(size_t i=0;i<3;++i) {
            std::cout<<v_weights.at(i)<<" ";
        }
        std::cout<<std::endl;
        lines_feat.clear();
        infile_feat.open("test.data");
        while(!infile_feat.eof()) {
            getline(infile_feat, feature);
            if(feature.empty())
                break;
            std::stringstream stringin(feature);
            lines.clear();
            lines.push_back(1.0);
            while(stringin >> feat_onePoint) {
                lines.push_back(feat_onePoint);
            }
            lines_feat.push_back(lines);
        }
        infile_feat.close();
        std::cout<<"display test data: "<<std::endl;
        DisplayData(lines_feat);
        for(size_t i=0;i<lines_feat.size();++i) {
            v_x.clear();
            v_x.push_back(lines_feat[i][0]);
            v_x.push_back(lines_feat[i][1]);
            v_x.push_back(lines_feat[i][2]);
            res=getMatResult(v_x,v_weights);
            double lable=sigmoid(res);
            for(size_t j=0;j<4;++j) {
                std::cout<<lines_feat[i][j]<<" ";
            }
            if(lable>0.5)
                std::cout<<" 1"<<std::endl;
            else
                std::cout<<" 0"<<std::endl;
        }
        return 0;
    }

  • 相关阅读:
    微软企业库4.1学习笔记(十一)企业库的核心类 Virus
    微软企业库4.1学习笔记(七)创建对象 续集1 Virus
    微软企业库4.1学习笔记(五)对象创建和依赖注入方法 Virus
    微软企业库4.1学习笔记(十六)缓存模块4 服务器场中的缓存使用 Virus
    Android知识汇总
    移动UI研究学习汇总
    iOS独立存储Demo(调试过可以运行)
    The Official Preppy Handbook 目录
    一个好的App架构应该包括什么?
    转身再不仅仅只是开发人员
  • 原文地址:https://www.cnblogs.com/donggongdechen/p/7634628.html
Copyright © 2020-2023  润新知