• 批量梯度下降(Batch gradient descent) C++


    At each step the weight vector is moved in the direction of the greatest rate of decrease of the error function,

    and so this approach is known as gradient descent(梯度下降法) or steepest descent(最速下降法).

    Techniques that use the whole data set at once are called batch methods.

    With the method of gradient descent used to perform the training, the advantages of batch learning

    include the following:

    1)accurate estimation of the gradient vector(i.e., the derivative of the cost function with respect to the weight vector w),

    thereby guaranteeing, under simple conditions, convergence of the method of steepest descent to a local minimum;

    2)parallalization of the learning process.

    However, from a practical perspective, batch learning is rather demanding in terms of storage requirements.

    #include <iostream>
    #include <vector>
    #include <cmath>
    #include <cfloat>

    /*批量梯度下降法*/
    int main() {
        double datax[]={1,2,3,4,5};
        double datay[]={1,1,2,2,4};
        std::vector<double> v_datax,v_datay;

        for(size_t i=0;i<sizeof(datax)/sizeof(datax[0]);++i) {
            v_datax.push_back(datax[i]);
            v_datay.push_back(datay[i]);
        }

        double a=0,b=0;
        double J=0.0;

        for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
            J+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
        }
        J=J*0.5/v_datax.size();
                                
        while(true) {
            double grad0=0,grad1=0;
            for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
                grad0+=(a+b*(*iterx)-*itery);
                grad1+=(a+b*(*iterx)-*itery)*(*iterx);
            }

            grad0=grad0/v_datax.size();
            grad1=grad1/v_datax.size();

            //0.03为学习率阿尔法
            a=a-0.03*grad0;
            b=b-0.03*grad1;
            double MSE=0;
            
            for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
                MSE+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
            }
            MSE=MSE*0.5/v_datax.size();
            
            if(std::abs(J-MSE)<0.0000001)
                break;
            J=MSE;
        }

        std::cout<<"批量梯度下降法得到的结果:"<<std::endl;
        std::cout<<"a = "<<a<<std::endl;
        std::cout<<"b = "<<b<<std::endl;

        return 0;
    }

    In a statistical context, batch learning may be viewed as a form of statistical inference. It is therefore well suited

    for solving nonlinear regression problems.

  • 相关阅读:
    JDK5.0新特性系列10.监控与管理虚拟机
    JDK5.0新特性系列7.使用ProcessBuilder执行本地命令
    JDK5.0新特性系列4.静态导入
    JDK5.0新特性系列8.泛型编程
    JDK5.0新特性系列11.2线程 任务执行架构
    JDK5.0新特性系列6.格式化输出
    Request的编码问题,客户端为繁体系统时为乱码解决了。
    智能手机之新手篇[转]
    一篇颇有感触的文章
    修复Oracle9i中DBA的密码
  • 原文地址:https://www.cnblogs.com/donggongdechen/p/7399322.html
Copyright © 2020-2023  润新知