使用wait、notify方法实现线程间的通信(注意这两个方法都是object的类的方法,换句话说java为所有的对象都提供了这两个方法)
1.wait和notify必须配合synchronized关键字使用
2.wait方法释放锁,notify方法不释放锁
示例1:
public class ListAdd1 { private volatile static List list = new ArrayList(); public void add(){ list.add("element"); } public int size(){ return list.size(); } public static void main(String[] args) { final ListAdd1 list1 = new ListAdd1(); Thread t1 = new Thread(new Runnable() { public void run(){ try { for(int i = 0; i <10; i++){ list1.add(); System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素.."); Thread.sleep(500); } } catch (InterruptedException e) { e.printStackTrace(); } } }, "t1"); Thread t2 = new Thread(new Runnable() { public void run() { while(true){ if(list1.size() == 5){ System.out.println("当前线程收到通知:" + Thread.currentThread().getName() + " list size = 5 线程停止.."); throw new RuntimeException(); } } } }, "t2"); t1.start(); t2.start(); } }
上述代码实现了这样的功能:t1线程向一个list里面不断添加元素,t2线程死循环不断查看list的长度,当达到5的时候,t2程序退出。
以上程序有个不好的地方在于t2线程是不停的查看list的长度的,可以用其他的方式实现阻塞通知的效果就好了.
示例2:
public class ListAdd2 { private volatile static List list = new ArrayList(); public void add(){ list.add("element"); } public int size(){ return list.size(); } public static void main(String[] args) { final ListAdd2 list2 = new ListAdd2(); // 1 实例化出来一个 lock // 当使用wait 和 notify 的时候 , 一定要配合着synchronized关键字去使用 final Object lock = new Object(); Thread t1 = new Thread(new Runnable() { public void run() { try { synchronized (lock) { for(int i = 0; i <10; i++){ list2.add(); System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素.."); Thread.sleep(500); if(list2.size() == 5){ System.out.println("t1已经发出通知.."); lock.notify(); } } } } catch (InterruptedException e) { e.printStackTrace(); } } }, "t1"); Thread t2 = new Thread(new Runnable() { public void run() { synchronized (lock) { if(list2.size() != 5){ try { lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("当前线程:" + Thread.currentThread().getName() + "收到通知线程停止.."); throw new RuntimeException(); } } }, "t2"); t2.start(); t1.start(); } }
示例2执行的效果是:
当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. t1已经发出通知.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t1添加了一个元素.. 当前线程:t2收到通知线程停止.. Exception in thread "t2" java.lang.RuntimeException at ListAdd2$2.run(ListAdd2.java:62) at java.lang.Thread.run(Thread.java:745)
这里使用了wait和notify。首先注意到的是t2线程是先start的,然后t2线程获得lock,t2线程判断list的长度,长度这时候为0,t2调用了wait方法释放了lock。
t1线程启动后,lock被t2线程所持有,所以只能等待t2线程将锁释放。释放lock后,t1得到锁就开始向list中添加元素,当添加的元素的个数等于5的时候,调用notify方法,将t2线程唤醒。
但是t2线程被唤醒之后,并没有得到lock,只能等待t1线程先将锁释放,才能停下来。
示例2实现了示例1的基本功能,但是还不一样,因为在示例2中,t2的停止有很大的延迟,当list的长度等于5是,没有实时的停止下来。
示例3:
public class ListAdd2 { private volatile static List list = new ArrayList(); public void add() { list.add("element"); } public int size() { return list.size(); } public static void main(String[] args) { final ListAdd2 list2 = new ListAdd2(); final CountDownLatch countDownLatch = new CountDownLatch(1); Thread t1 = new Thread(new Runnable() { public void run() { try { for (int i = 0; i < 10; i++) { list2.add(); System.out.println("当前线程:" + Thread.currentThread().getName() + "添加了一个元素.."); Thread.sleep(500); if (list2.size() == 5) { System.out.println("t1已经发出通知.."); countDownLatch.countDown(); } } } catch (InterruptedException e) { e.printStackTrace(); } } }, "t1"); Thread t2 = new Thread(new Runnable() { public void run() { if (list2.size() != 5) { try { countDownLatch.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("当前线程:" + Thread.currentThread().getName() + "收到通知线程停止.."); throw new RuntimeException(); } }, "t2"); t2.start(); t1.start(); } }
示例3使用CountDownLatch解决了实时性。