今天有些收获了,成功运行了数组求和代码:就是将N个数相加求和
//环境:CUDA5.0,vs2010
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
cudaError_t addWithCuda(int *c, int *a);
#define TOTALN 72120
#define BLOCKS_PerGrid 32
#define THREADS_PerBlock 64 //2^8
__global__ void SumArray(int *c, int *a)//, int *b)
{
__shared__ unsigned int mycache[THREADS_PerBlock];//设置每个块内同享内存threadsPerBlock==blockDim.x
int i = threadIdx.x+blockIdx.x*blockDim.x;
int j = gridDim.x*blockDim.x;//每个grid里一共有多少个线程
int cacheN;
unsigned sum,k;
sum=0;
cacheN=threadIdx.x; //
while(i<TOTALN)
{
sum += a[i];// + b[i];
i = i+j;
}
mycache[cacheN]=sum;
__syncthreads();//对线程块进行同步;等待该块里所有线程都计算结束
//下面开始计算本block中每个线程得到的sum(保存在mycache)的和
//递归方法:(参考《GPU高性能编程CUDA实战中文》)
//1:线程对半加:
k=THREADS_PerBlock>>1;
while(k)
{
if(cacheN<k)
{
//线程号小于一半的线程继续运行这里加
mycache[cacheN] += mycache[cacheN+k];//数组序列对半加,得到结果,放到前半部分数组,为下次递归准备
}
__syncthreads();//对线程块进行同步;等待该块里所有线程都计算结束
k=k>>1;//数组序列,继续对半,准备后面的递归
}
//最后一次递归是在该块的线程0中进行,所有把线程0里的结果返回给CPU
if(cacheN==0)
{
c[blockIdx.x]=mycache[0];
}
}
int main()
{
int a[TOTALN] ;
int c[BLOCKS_PerGrid] ;
unsigned int j;
for(j=0;j<TOTALN;j++)
{
//初始化数组,您可以自己填写数据,我这里用1
a[j]=1;
}
// 进行并行求和
cudaError_t cudaStatus = addWithCuda(c, a);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
unsigned int sum1,sum2;
sum1=0;
for(j=0;j<BLOCKS_PerGrid;j++)
{
sum1 +=c[j];
}
//用CPU验证和是否正确
sum2=0;
for(j=0;j<TOTALN;j++)
{
sum2 += a[j];
}
printf("sum1=%d; sum2=%d ",sum1,sum2);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, int *a)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// 申请一个GPU内存空间,长度和main函数中c数组一样
cudaStatus = cudaMalloc((void**)&dev_c, BLOCKS_PerGrid * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// 申请一个GPU内存空间,长度和main函数中a数组一样
cudaStatus = cudaMalloc((void**)&dev_a, TOTALN * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// Copy input vectors from host memory to GPU buffers.
//将a的数据从cpu中复制到GPU中
cudaStatus = cudaMemcpy(dev_a, a, TOTALN * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
//////////////////////////////////////////////////
// Launch a kernel on the GPU with one thread for each element.
//启动GPU上的每个单元的线程
SumArray<<<BLOCKS_PerGrid, THREADS_PerBlock>>>(dev_c, dev_a);//, dev_b);
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
//等待全部线程运行结束
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!
", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, BLOCKS_PerGrid * sizeof(int), cudaMemcpyDeviceToHost);
//cudaStatus = cudaMemcpy(b, dev_b, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
return cudaStatus;
}