• Webrtc Fourier Transform


    webrtc-audioproc-master/modules/audio_processing/utility/fft4g.c

    /*
     * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
     * Copyright Takuya OOURA, 1996-2001
     *
     * You may use, copy, modify and distribute this code for any purpose (include
     * commercial use) and without fee. Please refer to this package when you modify
     * this code.
     *
     * Changes:
     * Trivial type modifications by the WebRTC authors.
     */
    
    /*
    Fast Fourier/Cosine/Sine Transform
        dimension   :one
        data length :power of 2
        decimation  :frequency
        radix       :4, 2
        data        :inplace
        table       :use
    functions
        cdft: Complex Discrete Fourier Transform
        rdft: Real Discrete Fourier Transform
        ddct: Discrete Cosine Transform
        ddst: Discrete Sine Transform
        dfct: Cosine Transform of RDFT (Real Symmetric DFT)
        dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
    function prototypes
        void cdft(int, int, float *, int *, float *);
        void rdft(int, int, float *, int *, float *);
        void ddct(int, int, float *, int *, float *);
        void ddst(int, int, float *, int *, float *);
        void dfct(int, float *, float *, int *, float *);
        void dfst(int, float *, float *, int *, float *);
    
    
    -------- Complex DFT (Discrete Fourier Transform) --------
        [definition]
            <case1>
                X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
            <case2>
                X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
            (notes: sum_j=0^n-1 is a summation from j=0 to n-1)
        [usage]
            <case1>
                ip[0] = 0; // first time only
                cdft(2*n, 1, a, ip, w);
            <case2>
                ip[0] = 0; // first time only
                cdft(2*n, -1, a, ip, w);
        [parameters]
            2*n            :data length (int)
                            n >= 1, n = power of 2
            a[0...2*n-1]   :input/output data (float *)
                            input data
                                a[2*j] = Re(x[j]),
                                a[2*j+1] = Im(x[j]), 0<=j<n
                            output data
                                a[2*k] = Re(X[k]),
                                a[2*k+1] = Im(X[k]), 0<=k<n
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n/2-1]   :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                cdft(2*n, -1, a, ip, w);
            is
                cdft(2*n, 1, a, ip, w);
                for (j = 0; j <= 2 * n - 1; j++) {
                    a[j] *= 1.0 / n;
                }
            .
    
    
    -------- Real DFT / Inverse of Real DFT --------
        [definition]
            <case1> RDFT
                R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
                I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
            <case2> IRDFT (excluding scale)
                a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +
                       sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
                       sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
        [usage]
            <case1>
                ip[0] = 0; // first time only
                rdft(n, 1, a, ip, w);
            <case2>
                ip[0] = 0; // first time only
                rdft(n, -1, a, ip, w);
        [parameters]
            n              :data length (int)
                            n >= 2, n = power of 2
            a[0...n-1]     :input/output data (float *)
                            <case1>
                                output data
                                    a[2*k] = R[k], 0<=k<n/2
                                    a[2*k+1] = I[k], 0<k<n/2
                                    a[1] = R[n/2]
                            <case2>
                                input data
                                    a[2*j] = R[j], 0<=j<n/2
                                    a[2*j+1] = I[j], 0<j<n/2
                                    a[1] = R[n/2]
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n/2)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n/2-1]   :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                rdft(n, 1, a, ip, w);
            is
                rdft(n, -1, a, ip, w);
                for (j = 0; j <= n - 1; j++) {
                    a[j] *= 2.0 / n;
                }
            .
    
    
    -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
        [definition]
            <case1> IDCT (excluding scale)
                C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
            <case2> DCT
                C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
        [usage]
            <case1>
                ip[0] = 0; // first time only
                ddct(n, 1, a, ip, w);
            <case2>
                ip[0] = 0; // first time only
                ddct(n, -1, a, ip, w);
        [parameters]
            n              :data length (int)
                            n >= 2, n = power of 2
            a[0...n-1]     :input/output data (float *)
                            output data
                                a[k] = C[k], 0<=k<n
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n/2)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n*5/4-1] :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                ddct(n, -1, a, ip, w);
            is
                a[0] *= 0.5;
                ddct(n, 1, a, ip, w);
                for (j = 0; j <= n - 1; j++) {
                    a[j] *= 2.0 / n;
                }
            .
    
    
    -------- DST (Discrete Sine Transform) / Inverse of DST --------
        [definition]
            <case1> IDST (excluding scale)
                S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
            <case2> DST
                S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
        [usage]
            <case1>
                ip[0] = 0; // first time only
                ddst(n, 1, a, ip, w);
            <case2>
                ip[0] = 0; // first time only
                ddst(n, -1, a, ip, w);
        [parameters]
            n              :data length (int)
                            n >= 2, n = power of 2
            a[0...n-1]     :input/output data (float *)
                            <case1>
                                input data
                                    a[j] = A[j], 0<j<n
                                    a[0] = A[n]
                                output data
                                    a[k] = S[k], 0<=k<n
                            <case2>
                                output data
                                    a[k] = S[k], 0<k<n
                                    a[0] = S[n]
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n/2)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n/2+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n*5/4-1] :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                ddst(n, -1, a, ip, w);
            is
                a[0] *= 0.5;
                ddst(n, 1, a, ip, w);
                for (j = 0; j <= n - 1; j++) {
                    a[j] *= 2.0 / n;
                }
            .
    
    
    -------- Cosine Transform of RDFT (Real Symmetric DFT) --------
        [definition]
            C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
        [usage]
            ip[0] = 0; // first time only
            dfct(n, a, t, ip, w);
        [parameters]
            n              :data length - 1 (int)
                            n >= 2, n = power of 2
            a[0...n]       :input/output data (float *)
                            output data
                                a[k] = C[k], 0<=k<=n
            t[0...n/2]     :work area (float *)
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n/4)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n/4+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n*5/8-1] :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                a[0] *= 0.5;
                a[n] *= 0.5;
                dfct(n, a, t, ip, w);
            is
                a[0] *= 0.5;
                a[n] *= 0.5;
                dfct(n, a, t, ip, w);
                for (j = 0; j <= n; j++) {
                    a[j] *= 2.0 / n;
                }
            .
    
    
    -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
        [definition]
            S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
        [usage]
            ip[0] = 0; // first time only
            dfst(n, a, t, ip, w);
        [parameters]
            n              :data length + 1 (int)
                            n >= 2, n = power of 2
            a[0...n-1]     :input/output data (float *)
                            output data
                                a[k] = S[k], 0<k<n
                            (a[0] is used for work area)
            t[0...n/2-1]   :work area (float *)
            ip[0...*]      :work area for bit reversal (int *)
                            length of ip >= 2+sqrt(n/4)
                            strictly,
                            length of ip >=
                                2+(1<<(int)(log(n/4+0.5)/log(2))/2).
                            ip[0],ip[1] are pointers of the cos/sin table.
            w[0...n*5/8-1] :cos/sin table (float *)
                            w[],ip[] are initialized if ip[0] == 0.
        [remark]
            Inverse of
                dfst(n, a, t, ip, w);
            is
                dfst(n, a, t, ip, w);
                for (j = 1; j <= n - 1; j++) {
                    a[j] *= 2.0 / n;
                }
            .
    
    
    Appendix :
        The cos/sin table is recalculated when the larger table required.
        w[] and ip[] are compatible with all routines.
    */
    
    static void makewt(int nw, int *ip, float *w);
    static void makect(int nc, int *ip, float *c);
    static void bitrv2(int n, int *ip, float *a);
    static void bitrv2conj(int n, int *ip, float *a);
    static void cftfsub(int n, float *a, float *w);
    static void cftbsub(int n, float *a, float *w);
    static void cft1st(int n, float *a, float *w);
    static void cftmdl(int n, int l, float *a, float *w);
    static void rftfsub(int n, float *a, int nc, float *c);
    static void rftbsub(int n, float *a, int nc, float *c);
    #if 0  // Not used.
    static void dctsub(int n, float *a, int nc, float *c)
    static void dstsub(int n, float *a, int nc, float *c)
    #endif
    
    
    void WebRtc_cdft(int n, int isgn, float *a, int *ip, float *w)
    {
        if (n > (ip[0] << 2)) {
            makewt(n >> 2, ip, w);
        }
        if (n > 4) {
            if (isgn >= 0) {
                bitrv2(n, ip + 2, a);
                cftfsub(n, a, w);
            } else {
                bitrv2conj(n, ip + 2, a);
                cftbsub(n, a, w);
            }
        } else if (n == 4) {
            cftfsub(n, a, w);
        }
    }
    
    
    void WebRtc_rdft(int n, int isgn, float *a, int *ip, float *w)
    {
        int nw, nc;
        float xi;
    
        nw = ip[0];
        if (n > (nw << 2)) {
            nw = n >> 2;
            makewt(nw, ip, w);
        }
        nc = ip[1];
        if (n > (nc << 2)) {
            nc = n >> 2;
            makect(nc, ip, w + nw);
        }
        if (isgn >= 0) {
            if (n > 4) {
                bitrv2(n, ip + 2, a);
                cftfsub(n, a, w);
                rftfsub(n, a, nc, w + nw);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
            xi = a[0] - a[1];
            a[0] += a[1];
            a[1] = xi;
        } else {
            a[1] = 0.5f * (a[0] - a[1]);
            a[0] -= a[1];
            if (n > 4) {
                rftbsub(n, a, nc, w + nw);
                bitrv2(n, ip + 2, a);
                cftbsub(n, a, w);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
        }
    }
    
    #if 0  // Not used.
    static void ddct(int n, int isgn, float *a, int *ip, float *w)
    {
        int j, nw, nc;
        float xr;
    
        nw = ip[0];
        if (n > (nw << 2)) {
            nw = n >> 2;
            makewt(nw, ip, w);
        }
        nc = ip[1];
        if (n > nc) {
            nc = n;
            makect(nc, ip, w + nw);
        }
        if (isgn < 0) {
            xr = a[n - 1];
            for (j = n - 2; j >= 2; j -= 2) {
                a[j + 1] = a[j] - a[j - 1];
                a[j] += a[j - 1];
            }
            a[1] = a[0] - xr;
            a[0] += xr;
            if (n > 4) {
                rftbsub(n, a, nc, w + nw);
                bitrv2(n, ip + 2, a);
                cftbsub(n, a, w);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
        }
        dctsub(n, a, nc, w + nw);
        if (isgn >= 0) {
            if (n > 4) {
                bitrv2(n, ip + 2, a);
                cftfsub(n, a, w);
                rftfsub(n, a, nc, w + nw);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
            xr = a[0] - a[1];
            a[0] += a[1];
            for (j = 2; j < n; j += 2) {
                a[j - 1] = a[j] - a[j + 1];
                a[j] += a[j + 1];
            }
            a[n - 1] = xr;
        }
    }
    
    
    static void ddst(int n, int isgn, float *a, int *ip, float *w)
    {
        int j, nw, nc;
        float xr;
    
        nw = ip[0];
        if (n > (nw << 2)) {
            nw = n >> 2;
            makewt(nw, ip, w);
        }
        nc = ip[1];
        if (n > nc) {
            nc = n;
            makect(nc, ip, w + nw);
        }
        if (isgn < 0) {
            xr = a[n - 1];
            for (j = n - 2; j >= 2; j -= 2) {
                a[j + 1] = -a[j] - a[j - 1];
                a[j] -= a[j - 1];
            }
            a[1] = a[0] + xr;
            a[0] -= xr;
            if (n > 4) {
                rftbsub(n, a, nc, w + nw);
                bitrv2(n, ip + 2, a);
                cftbsub(n, a, w);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
        }
        dstsub(n, a, nc, w + nw);
        if (isgn >= 0) {
            if (n > 4) {
                bitrv2(n, ip + 2, a);
                cftfsub(n, a, w);
                rftfsub(n, a, nc, w + nw);
            } else if (n == 4) {
                cftfsub(n, a, w);
            }
            xr = a[0] - a[1];
            a[0] += a[1];
            for (j = 2; j < n; j += 2) {
                a[j - 1] = -a[j] - a[j + 1];
                a[j] -= a[j + 1];
            }
            a[n - 1] = -xr;
        }
    }
    
    
    static void dfct(int n, float *a, float *t, int *ip, float *w)
    {
        int j, k, l, m, mh, nw, nc;
        float xr, xi, yr, yi;
    
        nw = ip[0];
        if (n > (nw << 3)) {
            nw = n >> 3;
            makewt(nw, ip, w);
        }
        nc = ip[1];
        if (n > (nc << 1)) {
            nc = n >> 1;
            makect(nc, ip, w + nw);
        }
        m = n >> 1;
        yi = a[m];
        xi = a[0] + a[n];
        a[0] -= a[n];
        t[0] = xi - yi;
        t[m] = xi + yi;
        if (n > 2) {
            mh = m >> 1;
            for (j = 1; j < mh; j++) {
                k = m - j;
                xr = a[j] - a[n - j];
                xi = a[j] + a[n - j];
                yr = a[k] - a[n - k];
                yi = a[k] + a[n - k];
                a[j] = xr;
                a[k] = yr;
                t[j] = xi - yi;
                t[k] = xi + yi;
            }
            t[mh] = a[mh] + a[n - mh];
            a[mh] -= a[n - mh];
            dctsub(m, a, nc, w + nw);
            if (m > 4) {
                bitrv2(m, ip + 2, a);
                cftfsub(m, a, w);
                rftfsub(m, a, nc, w + nw);
            } else if (m == 4) {
                cftfsub(m, a, w);
            }
            a[n - 1] = a[0] - a[1];
            a[1] = a[0] + a[1];
            for (j = m - 2; j >= 2; j -= 2) {
                a[2 * j + 1] = a[j] + a[j + 1];
                a[2 * j - 1] = a[j] - a[j + 1];
            }
            l = 2;
            m = mh;
            while (m >= 2) {
                dctsub(m, t, nc, w + nw);
                if (m > 4) {
                    bitrv2(m, ip + 2, t);
                    cftfsub(m, t, w);
                    rftfsub(m, t, nc, w + nw);
                } else if (m == 4) {
                    cftfsub(m, t, w);
                }
                a[n - l] = t[0] - t[1];
                a[l] = t[0] + t[1];
                k = 0;
                for (j = 2; j < m; j += 2) {
                    k += l << 2;
                    a[k - l] = t[j] - t[j + 1];
                    a[k + l] = t[j] + t[j + 1];
                }
                l <<= 1;
                mh = m >> 1;
                for (j = 0; j < mh; j++) {
                    k = m - j;
                    t[j] = t[m + k] - t[m + j];
                    t[k] = t[m + k] + t[m + j];
                }
                t[mh] = t[m + mh];
                m = mh;
            }
            a[l] = t[0];
            a[n] = t[2] - t[1];
            a[0] = t[2] + t[1];
        } else {
            a[1] = a[0];
            a[2] = t[0];
            a[0] = t[1];
        }
    }
    
    static void dfst(int n, float *a, float *t, int *ip, float *w)
    {
        int j, k, l, m, mh, nw, nc;
        float xr, xi, yr, yi;
    
        nw = ip[0];
        if (n > (nw << 3)) {
            nw = n >> 3;
            makewt(nw, ip, w);
        }
        nc = ip[1];
        if (n > (nc << 1)) {
            nc = n >> 1;
            makect(nc, ip, w + nw);
        }
        if (n > 2) {
            m = n >> 1;
            mh = m >> 1;
            for (j = 1; j < mh; j++) {
                k = m - j;
                xr = a[j] + a[n - j];
                xi = a[j] - a[n - j];
                yr = a[k] + a[n - k];
                yi = a[k] - a[n - k];
                a[j] = xr;
                a[k] = yr;
                t[j] = xi + yi;
                t[k] = xi - yi;
            }
            t[0] = a[mh] - a[n - mh];
            a[mh] += a[n - mh];
            a[0] = a[m];
            dstsub(m, a, nc, w + nw);
            if (m > 4) {
                bitrv2(m, ip + 2, a);
                cftfsub(m, a, w);
                rftfsub(m, a, nc, w + nw);
            } else if (m == 4) {
                cftfsub(m, a, w);
            }
            a[n - 1] = a[1] - a[0];
            a[1] = a[0] + a[1];
            for (j = m - 2; j >= 2; j -= 2) {
                a[2 * j + 1] = a[j] - a[j + 1];
                a[2 * j - 1] = -a[j] - a[j + 1];
            }
            l = 2;
            m = mh;
            while (m >= 2) {
                dstsub(m, t, nc, w + nw);
                if (m > 4) {
                    bitrv2(m, ip + 2, t);
                    cftfsub(m, t, w);
                    rftfsub(m, t, nc, w + nw);
                } else if (m == 4) {
                    cftfsub(m, t, w);
                }
                a[n - l] = t[1] - t[0];
                a[l] = t[0] + t[1];
                k = 0;
                for (j = 2; j < m; j += 2) {
                    k += l << 2;
                    a[k - l] = -t[j] - t[j + 1];
                    a[k + l] = t[j] - t[j + 1];
                }
                l <<= 1;
                mh = m >> 1;
                for (j = 1; j < mh; j++) {
                    k = m - j;
                    t[j] = t[m + k] + t[m + j];
                    t[k] = t[m + k] - t[m + j];
                }
                t[0] = t[m + mh];
                m = mh;
            }
            a[l] = t[0];
        }
        a[0] = 0;
    }
    #endif  // Not used.
    
    
    /* -------- initializing routines -------- */
    
    
    #include <math.h>
    
    static void makewt(int nw, int *ip, float *w)
    {
        int j, nwh;
        float delta, x, y;
    
        ip[0] = nw;
        ip[1] = 1;
        if (nw > 2) {
            nwh = nw >> 1;
            delta = (float)atan(1.0f) / nwh;
            w[0] = 1;
            w[1] = 0;
            w[nwh] = (float)cos(delta * nwh);
            w[nwh + 1] = w[nwh];
            if (nwh > 2) {
                for (j = 2; j < nwh; j += 2) {
                    x = (float)cos(delta * j);
                    y = (float)sin(delta * j);
                    w[j] = x;
                    w[j + 1] = y;
                    w[nw - j] = y;
                    w[nw - j + 1] = x;
                }
                bitrv2(nw, ip + 2, w);
            }
        }
    }
    
    
    static void makect(int nc, int *ip, float *c)
    {
        int j, nch;
        float delta;
    
        ip[1] = nc;
        if (nc > 1) {
            nch = nc >> 1;
            delta = (float)atan(1.0f) / nch;
            c[0] = (float)cos(delta * nch);
            c[nch] = 0.5f * c[0];
            for (j = 1; j < nch; j++) {
                c[j] = 0.5f * (float)cos(delta * j);
                c[nc - j] = 0.5f * (float)sin(delta * j);
            }
        }
    }
    
    
    /* -------- child routines -------- */
    
    
    static void bitrv2(int n, int *ip, float *a)
    {
        int j, j1, k, k1, l, m, m2;
        float xr, xi, yr, yi;
    
        ip[0] = 0;
        l = n;
        m = 1;
        while ((m << 3) < l) {
            l >>= 1;
            for (j = 0; j < m; j++) {
                ip[m + j] = ip[j] + l;
            }
            m <<= 1;
        }
        m2 = 2 * m;
        if ((m << 3) == l) {
            for (k = 0; k < m; k++) {
                for (j = 0; j < k; j++) {
                    j1 = 2 * j + ip[k];
                    k1 = 2 * k + ip[j];
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += 2 * m2;
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 -= m2;
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += 2 * m2;
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                }
                j1 = 2 * k + m2 + ip[k];
                k1 = j1 + m2;
                xr = a[j1];
                xi = a[j1 + 1];
                yr = a[k1];
                yi = a[k1 + 1];
                a[j1] = yr;
                a[j1 + 1] = yi;
                a[k1] = xr;
                a[k1 + 1] = xi;
            }
        } else {
            for (k = 1; k < m; k++) {
                for (j = 0; j < k; j++) {
                    j1 = 2 * j + ip[k];
                    k1 = 2 * k + ip[j];
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += m2;
                    xr = a[j1];
                    xi = a[j1 + 1];
                    yr = a[k1];
                    yi = a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                }
            }
        }
    }
    
    
    static void bitrv2conj(int n, int *ip, float *a)
    {
        int j, j1, k, k1, l, m, m2;
        float xr, xi, yr, yi;
    
        ip[0] = 0;
        l = n;
        m = 1;
        while ((m << 3) < l) {
            l >>= 1;
            for (j = 0; j < m; j++) {
                ip[m + j] = ip[j] + l;
            }
            m <<= 1;
        }
        m2 = 2 * m;
        if ((m << 3) == l) {
            for (k = 0; k < m; k++) {
                for (j = 0; j < k; j++) {
                    j1 = 2 * j + ip[k];
                    k1 = 2 * k + ip[j];
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += 2 * m2;
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 -= m2;
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += 2 * m2;
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                }
                k1 = 2 * k + ip[k];
                a[k1 + 1] = -a[k1 + 1];
                j1 = k1 + m2;
                k1 = j1 + m2;
                xr = a[j1];
                xi = -a[j1 + 1];
                yr = a[k1];
                yi = -a[k1 + 1];
                a[j1] = yr;
                a[j1 + 1] = yi;
                a[k1] = xr;
                a[k1 + 1] = xi;
                k1 += m2;
                a[k1 + 1] = -a[k1 + 1];
            }
        } else {
            a[1] = -a[1];
            a[m2 + 1] = -a[m2 + 1];
            for (k = 1; k < m; k++) {
                for (j = 0; j < k; j++) {
                    j1 = 2 * j + ip[k];
                    k1 = 2 * k + ip[j];
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                    j1 += m2;
                    k1 += m2;
                    xr = a[j1];
                    xi = -a[j1 + 1];
                    yr = a[k1];
                    yi = -a[k1 + 1];
                    a[j1] = yr;
                    a[j1 + 1] = yi;
                    a[k1] = xr;
                    a[k1 + 1] = xi;
                }
                k1 = 2 * k + ip[k];
                a[k1 + 1] = -a[k1 + 1];
                a[k1 + m2 + 1] = -a[k1 + m2 + 1];
            }
        }
    }
    
    
    static void cftfsub(int n, float *a, float *w)
    {
        int j, j1, j2, j3, l;
        float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    
        l = 2;
        if (n > 8) {
            cft1st(n, a, w);
            l = 8;
            while ((l << 2) < n) {
                cftmdl(n, l, a, w);
                l <<= 2;
            }
        }
        if ((l << 2) == n) {
            for (j = 0; j < l; j += 2) {
                j1 = j + l;
                j2 = j1 + l;
                j3 = j2 + l;
                x0r = a[j] + a[j1];
                x0i = a[j + 1] + a[j1 + 1];
                x1r = a[j] - a[j1];
                x1i = a[j + 1] - a[j1 + 1];
                x2r = a[j2] + a[j3];
                x2i = a[j2 + 1] + a[j3 + 1];
                x3r = a[j2] - a[j3];
                x3i = a[j2 + 1] - a[j3 + 1];
                a[j] = x0r + x2r;
                a[j + 1] = x0i + x2i;
                a[j2] = x0r - x2r;
                a[j2 + 1] = x0i - x2i;
                a[j1] = x1r - x3i;
                a[j1 + 1] = x1i + x3r;
                a[j3] = x1r + x3i;
                a[j3 + 1] = x1i - x3r;
            }
        } else {
            for (j = 0; j < l; j += 2) {
                j1 = j + l;
                x0r = a[j] - a[j1];
                x0i = a[j + 1] - a[j1 + 1];
                a[j] += a[j1];
                a[j + 1] += a[j1 + 1];
                a[j1] = x0r;
                a[j1 + 1] = x0i;
            }
        }
    }
    
    
    static void cftbsub(int n, float *a, float *w)
    {
        int j, j1, j2, j3, l;
        float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    
        l = 2;
        if (n > 8) {
            cft1st(n, a, w);
            l = 8;
            while ((l << 2) < n) {
                cftmdl(n, l, a, w);
                l <<= 2;
            }
        }
        if ((l << 2) == n) {
            for (j = 0; j < l; j += 2) {
                j1 = j + l;
                j2 = j1 + l;
                j3 = j2 + l;
                x0r = a[j] + a[j1];
                x0i = -a[j + 1] - a[j1 + 1];
                x1r = a[j] - a[j1];
                x1i = -a[j + 1] + a[j1 + 1];
                x2r = a[j2] + a[j3];
                x2i = a[j2 + 1] + a[j3 + 1];
                x3r = a[j2] - a[j3];
                x3i = a[j2 + 1] - a[j3 + 1];
                a[j] = x0r + x2r;
                a[j + 1] = x0i - x2i;
                a[j2] = x0r - x2r;
                a[j2 + 1] = x0i + x2i;
                a[j1] = x1r - x3i;
                a[j1 + 1] = x1i - x3r;
                a[j3] = x1r + x3i;
                a[j3 + 1] = x1i + x3r;
            }
        } else {
            for (j = 0; j < l; j += 2) {
                j1 = j + l;
                x0r = a[j] - a[j1];
                x0i = -a[j + 1] + a[j1 + 1];
                a[j] += a[j1];
                a[j + 1] = -a[j + 1] - a[j1 + 1];
                a[j1] = x0r;
                a[j1 + 1] = x0i;
            }
        }
    }
    
    
    static void cft1st(int n, float *a, float *w)
    {
        int j, k1, k2;
        float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
        float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    
        x0r = a[0] + a[2];
        x0i = a[1] + a[3];
        x1r = a[0] - a[2];
        x1i = a[1] - a[3];
        x2r = a[4] + a[6];
        x2i = a[5] + a[7];
        x3r = a[4] - a[6];
        x3i = a[5] - a[7];
        a[0] = x0r + x2r;
        a[1] = x0i + x2i;
        a[4] = x0r - x2r;
        a[5] = x0i - x2i;
        a[2] = x1r - x3i;
        a[3] = x1i + x3r;
        a[6] = x1r + x3i;
        a[7] = x1i - x3r;
        wk1r = w[2];
        x0r = a[8] + a[10];
        x0i = a[9] + a[11];
        x1r = a[8] - a[10];
        x1i = a[9] - a[11];
        x2r = a[12] + a[14];
        x2i = a[13] + a[15];
        x3r = a[12] - a[14];
        x3i = a[13] - a[15];
        a[8] = x0r + x2r;
        a[9] = x0i + x2i;
        a[12] = x2i - x0i;
        a[13] = x0r - x2r;
        x0r = x1r - x3i;
        x0i = x1i + x3r;
        a[10] = wk1r * (x0r - x0i);
        a[11] = wk1r * (x0r + x0i);
        x0r = x3i + x1r;
        x0i = x3r - x1i;
        a[14] = wk1r * (x0i - x0r);
        a[15] = wk1r * (x0i + x0r);
        k1 = 0;
        for (j = 16; j < n; j += 16) {
            k1 += 2;
            k2 = 2 * k1;
            wk2r = w[k1];
            wk2i = w[k1 + 1];
            wk1r = w[k2];
            wk1i = w[k2 + 1];
            wk3r = wk1r - 2 * wk2i * wk1i;
            wk3i = 2 * wk2i * wk1r - wk1i;
            x0r = a[j] + a[j + 2];
            x0i = a[j + 1] + a[j + 3];
            x1r = a[j] - a[j + 2];
            x1i = a[j + 1] - a[j + 3];
            x2r = a[j + 4] + a[j + 6];
            x2i = a[j + 5] + a[j + 7];
            x3r = a[j + 4] - a[j + 6];
            x3i = a[j + 5] - a[j + 7];
            a[j] = x0r + x2r;
            a[j + 1] = x0i + x2i;
            x0r -= x2r;
            x0i -= x2i;
            a[j + 4] = wk2r * x0r - wk2i * x0i;
            a[j + 5] = wk2r * x0i + wk2i * x0r;
            x0r = x1r - x3i;
            x0i = x1i + x3r;
            a[j + 2] = wk1r * x0r - wk1i * x0i;
            a[j + 3] = wk1r * x0i + wk1i * x0r;
            x0r = x1r + x3i;
            x0i = x1i - x3r;
            a[j + 6] = wk3r * x0r - wk3i * x0i;
            a[j + 7] = wk3r * x0i + wk3i * x0r;
            wk1r = w[k2 + 2];
            wk1i = w[k2 + 3];
            wk3r = wk1r - 2 * wk2r * wk1i;
            wk3i = 2 * wk2r * wk1r - wk1i;
            x0r = a[j + 8] + a[j + 10];
            x0i = a[j + 9] + a[j + 11];
            x1r = a[j + 8] - a[j + 10];
            x1i = a[j + 9] - a[j + 11];
            x2r = a[j + 12] + a[j + 14];
            x2i = a[j + 13] + a[j + 15];
            x3r = a[j + 12] - a[j + 14];
            x3i = a[j + 13] - a[j + 15];
            a[j + 8] = x0r + x2r;
            a[j + 9] = x0i + x2i;
            x0r -= x2r;
            x0i -= x2i;
            a[j + 12] = -wk2i * x0r - wk2r * x0i;
            a[j + 13] = -wk2i * x0i + wk2r * x0r;
            x0r = x1r - x3i;
            x0i = x1i + x3r;
            a[j + 10] = wk1r * x0r - wk1i * x0i;
            a[j + 11] = wk1r * x0i + wk1i * x0r;
            x0r = x1r + x3i;
            x0i = x1i - x3r;
            a[j + 14] = wk3r * x0r - wk3i * x0i;
            a[j + 15] = wk3r * x0i + wk3i * x0r;
        }
    }
    
    
    static void cftmdl(int n, int l, float *a, float *w)
    {
        int j, j1, j2, j3, k, k1, k2, m, m2;
        float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
        float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    
        m = l << 2;
        for (j = 0; j < l; j += 2) {
            j1 = j + l;
            j2 = j1 + l;
            j3 = j2 + l;
            x0r = a[j] + a[j1];
            x0i = a[j + 1] + a[j1 + 1];
            x1r = a[j] - a[j1];
            x1i = a[j + 1] - a[j1 + 1];
            x2r = a[j2] + a[j3];
            x2i = a[j2 + 1] + a[j3 + 1];
            x3r = a[j2] - a[j3];
            x3i = a[j2 + 1] - a[j3 + 1];
            a[j] = x0r + x2r;
            a[j + 1] = x0i + x2i;
            a[j2] = x0r - x2r;
            a[j2 + 1] = x0i - x2i;
            a[j1] = x1r - x3i;
            a[j1 + 1] = x1i + x3r;
            a[j3] = x1r + x3i;
            a[j3 + 1] = x1i - x3r;
        }
        wk1r = w[2];
        for (j = m; j < l + m; j += 2) {
            j1 = j + l;
            j2 = j1 + l;
            j3 = j2 + l;
            x0r = a[j] + a[j1];
            x0i = a[j + 1] + a[j1 + 1];
            x1r = a[j] - a[j1];
            x1i = a[j + 1] - a[j1 + 1];
            x2r = a[j2] + a[j3];
            x2i = a[j2 + 1] + a[j3 + 1];
            x3r = a[j2] - a[j3];
            x3i = a[j2 + 1] - a[j3 + 1];
            a[j] = x0r + x2r;
            a[j + 1] = x0i + x2i;
            a[j2] = x2i - x0i;
            a[j2 + 1] = x0r - x2r;
            x0r = x1r - x3i;
            x0i = x1i + x3r;
            a[j1] = wk1r * (x0r - x0i);
            a[j1 + 1] = wk1r * (x0r + x0i);
            x0r = x3i + x1r;
            x0i = x3r - x1i;
            a[j3] = wk1r * (x0i - x0r);
            a[j3 + 1] = wk1r * (x0i + x0r);
        }
        k1 = 0;
        m2 = 2 * m;
        for (k = m2; k < n; k += m2) {
            k1 += 2;
            k2 = 2 * k1;
            wk2r = w[k1];
            wk2i = w[k1 + 1];
            wk1r = w[k2];
            wk1i = w[k2 + 1];
            wk3r = wk1r - 2 * wk2i * wk1i;
            wk3i = 2 * wk2i * wk1r - wk1i;
            for (j = k; j < l + k; j += 2) {
                j1 = j + l;
                j2 = j1 + l;
                j3 = j2 + l;
                x0r = a[j] + a[j1];
                x0i = a[j + 1] + a[j1 + 1];
                x1r = a[j] - a[j1];
                x1i = a[j + 1] - a[j1 + 1];
                x2r = a[j2] + a[j3];
                x2i = a[j2 + 1] + a[j3 + 1];
                x3r = a[j2] - a[j3];
                x3i = a[j2 + 1] - a[j3 + 1];
                a[j] = x0r + x2r;
                a[j + 1] = x0i + x2i;
                x0r -= x2r;
                x0i -= x2i;
                a[j2] = wk2r * x0r - wk2i * x0i;
                a[j2 + 1] = wk2r * x0i + wk2i * x0r;
                x0r = x1r - x3i;
                x0i = x1i + x3r;
                a[j1] = wk1r * x0r - wk1i * x0i;
                a[j1 + 1] = wk1r * x0i + wk1i * x0r;
                x0r = x1r + x3i;
                x0i = x1i - x3r;
                a[j3] = wk3r * x0r - wk3i * x0i;
                a[j3 + 1] = wk3r * x0i + wk3i * x0r;
            }
            wk1r = w[k2 + 2];
            wk1i = w[k2 + 3];
            wk3r = wk1r - 2 * wk2r * wk1i;
            wk3i = 2 * wk2r * wk1r - wk1i;
            for (j = k + m; j < l + (k + m); j += 2) {
                j1 = j + l;
                j2 = j1 + l;
                j3 = j2 + l;
                x0r = a[j] + a[j1];
                x0i = a[j + 1] + a[j1 + 1];
                x1r = a[j] - a[j1];
                x1i = a[j + 1] - a[j1 + 1];
                x2r = a[j2] + a[j3];
                x2i = a[j2 + 1] + a[j3 + 1];
                x3r = a[j2] - a[j3];
                x3i = a[j2 + 1] - a[j3 + 1];
                a[j] = x0r + x2r;
                a[j + 1] = x0i + x2i;
                x0r -= x2r;
                x0i -= x2i;
                a[j2] = -wk2i * x0r - wk2r * x0i;
                a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
                x0r = x1r - x3i;
                x0i = x1i + x3r;
                a[j1] = wk1r * x0r - wk1i * x0i;
                a[j1 + 1] = wk1r * x0i + wk1i * x0r;
                x0r = x1r + x3i;
                x0i = x1i - x3r;
                a[j3] = wk3r * x0r - wk3i * x0i;
                a[j3 + 1] = wk3r * x0i + wk3i * x0r;
            }
        }
    }
    
    
    static void rftfsub(int n, float *a, int nc, float *c)
    {
        int j, k, kk, ks, m;
        float wkr, wki, xr, xi, yr, yi;
    
        m = n >> 1;
        ks = 2 * nc / m;
        kk = 0;
        for (j = 2; j < m; j += 2) {
            k = n - j;
            kk += ks;
            wkr = 0.5f - c[nc - kk];
            wki = c[kk];
            xr = a[j] - a[k];
            xi = a[j + 1] + a[k + 1];
            yr = wkr * xr - wki * xi;
            yi = wkr * xi + wki * xr;
            a[j] -= yr;
            a[j + 1] -= yi;
            a[k] += yr;
            a[k + 1] -= yi;
        }
    }
    
    
    static void rftbsub(int n, float *a, int nc, float *c)
    {
        int j, k, kk, ks, m;
        float wkr, wki, xr, xi, yr, yi;
    
        a[1] = -a[1];
        m = n >> 1;
        ks = 2 * nc / m;
        kk = 0;
        for (j = 2; j < m; j += 2) {
            k = n - j;
            kk += ks;
            wkr = 0.5f - c[nc - kk];
            wki = c[kk];
            xr = a[j] - a[k];
            xi = a[j + 1] + a[k + 1];
            yr = wkr * xr + wki * xi;
            yi = wkr * xi - wki * xr;
            a[j] -= yr;
            a[j + 1] = yi - a[j + 1];
            a[k] += yr;
            a[k + 1] = yi - a[k + 1];
        }
        a[m + 1] = -a[m + 1];
    }
    
    #if 0  // Not used.
    static void dctsub(int n, float *a, int nc, float *c)
    {
        int j, k, kk, ks, m;
        float wkr, wki, xr;
    
        m = n >> 1;
        ks = nc / n;
        kk = 0;
        for (j = 1; j < m; j++) {
            k = n - j;
            kk += ks;
            wkr = c[kk] - c[nc - kk];
            wki = c[kk] + c[nc - kk];
            xr = wki * a[j] - wkr * a[k];
            a[j] = wkr * a[j] + wki * a[k];
            a[k] = xr;
        }
        a[m] *= c[0];
    }
    
    
    static void dstsub(int n, float *a, int nc, float *c)
    {
        int j, k, kk, ks, m;
        float wkr, wki, xr;
    
        m = n >> 1;
        ks = nc / n;
        kk = 0;
        for (j = 1; j < m; j++) {
            k = n - j;
            kk += ks;
            wkr = c[kk] - c[nc - kk];
            wki = c[kk] + c[nc - kk];
            xr = wki * a[k] - wkr * a[j];
            a[k] = wkr * a[k] + wki * a[j];
            a[j] = xr;
        }
        a[m] *= c[0];
    }
    #endif  // Not used.

    webrtc-audioproc-master/modules/audio_processing/utilityfft4g.h

    /*
     *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
     *
     *  Use of this source code is governed by a BSD-style license
     *  that can be found in the LICENSE file in the root of the source
     *  tree. An additional intellectual property rights grant can be found
     *  in the file PATENTS.  All contributing project authors may
     *  be found in the AUTHORS file in the root of the source tree.
     */
    
    #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_FFT4G_H_
    #define WEBRTC_MODULES_AUDIO_PROCESSING_UTILITY_FFT4G_H_
    
    void WebRtc_rdft(int, int, float *, int *, float *);
    void WebRtc_cdft(int, int, float *, int *, float *);
    
    #endif
  • 相关阅读:
    three.js 显示中文字体 和 tween应用
    Caddy v1 版本增加插件
    Git 常用命令大全
    批量部署ssh免密登陆
    Python MySQLdb 模块使用方法
    python XlsxWriter创建Excel 表格
    DB2数据库的日志文件管理
    Linux 文本对比 diff 命令详解(整理)
    ssh 免交互登录 ,远程执行命令脚本。
    linux 出错 “INFO: task xxxxxx: 634 blocked for more than 120 seconds.”的3种解决方案(转)
  • 原文地址:https://www.cnblogs.com/dong1/p/14171249.html
Copyright © 2020-2023  润新知