一、PS流传输格式预览
1、视频关键帧的封装 RTP + PS header + PS system header + PS system Map + PES header +h264 data
2、视频非关键帧的封装 RTP +PS header + PES header + h264 data
3、音频帧的封装: RTP + PES header + G711
二、服务端PS流接收组包和解析
以海康DS-IPC-B12H2-I为例
1. rtp over udp
80 60 00 00 00 00 00 00 00 00 04 00 00 00 01 ba
44 f0 4f 69 64 01 02 5f 03 fe ff ff 00 01 11 0c
00 00 01 bb 00 12 81 2f 81 04 e1 7f e0 e0 80 c0
c0 08 bd e0 80 bf e0 80 00 00 01 bc 00 5e f8 ff
00 24 40 0e 48 4b 01 00 14 14 40 16 6b bf 00 ff
ff ff 41 12 48 4b 00 01 02 03 04 05 06 07 08 09
0a 0b 0c 0d 0e 0f 00 30 1b e0 00 1c 42 0e 07 10
10 ea 05 00 02 d0 11 30 00 00 1c 21 2a 0a 7f ff
00 00 07 08 1f fe a0 5a 90 c0 00 0c 43 0a 01 40
fe 00 7d 03 03 e8 03 ff f6 53 94 03 00 00 01 e0
00 1e 8c 80 08 21 3c 13 da 59 ff ff fc 00 00 00
01 67 4d 00 1f 96 35 40 a0 0b 74 dc 04 04 04 08
00 00 01 e0 00 0e 8c 00 03 ff ff fc 00 00 00 01
68 ee 3c 80 00 00 01 e0 00 0e 8c 00 02 ff fc 00
00 00 01 06 e5 01 d5 80 00 00 01 e0 c2 06 8c 00
05 ff ff ff ff f8 00 00 00 01 65 b8 00 00 0a 77
80 00 00 4f e7 e5 34 0f f3 41 4b b9 58 a9 4e 4c
f4 ea 04 0e 32 a5 f9 51 df cc 4c b8 99 f2 cf 16
3e 32 19 ed 86 df 05 6b fc 21 5e 0f 87 90 20 c3
16 02 03 73 0f a3 d2 9b 52 1b b1 a7 7c b4 61 6d
d9 aa f4 5d 34 f6 49 d4 f6 72 af b6 c7 11 c0 ff
3d 1b fd e3 5d 41 db 32 3a c7 9f f4 f2 c0 99 e6 ...
数据解析,这是个I帧
rtp header 80 60 00 00 00 00 00 00 00 00 04 00
——12byte固定长度
ps header 00 00 01 ba ...
——00 00 01 ba 44 f0 4f 69 64 01 02 5f 03 fe ff ff 00 01 11 0c 前14byte是固定的,第14byte 0xfe & 0x07 = 0x0e 也就是后面拓展6byte
ps system header 00 00 01 bb ...
——随后的 00 12是长度,也就是ps system header长度=4+18 byte
ps system map 00 00 01 bc ...
——同样随后的 00 5e是长度,也就是ps system map的长度=4+94 byte
pes header 00 00 01 e0/c0 ...
——e0是视频,c0是音频,同样随后的00 1e是长度,也就是pes header的长度 4+30 byte,剩下的就是ps payload数据
ps payload SPS 00 00 00 01 67 ...
ps payload PPS 00 00 00 01 68 ...
ps payload I 00 00 00 01 65 ...
ps payload P 00 00 00 01 61/41 ...
海康的摄像头ps payload的起始标识是00 00 00 01 61,有些厂家的是00 00 00 01 41,通过第五字节 & 0x1F = 1,就是正确的ps payload起始标识
另外:
0x000001BD 私有数据,同0x000001E0 ,直接跳过
具体的PS格式可以参考网上的其他资料,另外,如果数据中包含0x000001,按h264协议会进行转义,即变成0x00000301,涉及到3个转义 0x000001 -> 0x00000301 0x000002 -> 0x00000302 0x000003 -> 0x00000303
接收,解析流程 udp--->rtp--->ps--->h264
while ((pack = sess.GetNextPacket()) != NULL) { loaddata = pack->GetPayloadData(); len = pack->GetPayloadLength(); /* payload type: ps */ if(pack->GetPayloadType() == 96) { /*the last packet*/ if(pack->HasMarker()) { if(pos + len < PS_BUFFER_SIZE){ memcpy(&buff[pos],loaddata,len); printf("!!! GetPayload len = %ld !!!! ",pos+len); size_t r = ps_demuxer_input(ps, buff, pos+len); pos = 0; lasttime = nowtime; } } else { if(pos + len < PS_BUFFER_SIZE){ memcpy(&buff[pos],loaddata,len); pos = pos + len; } } } else { printf("!!! GetPayloadType = %d !!!! ",pack->GetPayloadType()); } sess.DeletePacket(pack); }
将解析出来的h264视频和g711音频填充到待处理的列队
vedio
/* SPS frame 00 00 00 01 67 PPS frame 00 00 00 01 68 I frame 00 00 00 01 65 P slice 00 00 00 01 41/61 */ if(FindStartCode(p)) { data_t d; if(rb_numitems(task->buffer) < DATA_ITEM_NMAX){ if(task->pos < ITEM_BUFFER_SIZE) { memcpy(d.buf,task->buf, task->pos); d.size = task->pos; d.type = H264; rb_put(task->buffer, &d); fflush(stdout); } } task->pos = 0; if((task->pos + bytes) < TASK_BUFFER_SIZE){ memcpy(&(task->buf[task->pos]),p,bytes); task->pos = task->pos + bytes; } } else { if((task->pos + bytes) < TASK_BUFFER_SIZE){ memcpy(&(task->buf[task->pos]),p,bytes); task->pos = task->pos + bytes; } }
audio
data_t d; if (rb_numitems(task->buffer) < DATA_ITEM_NMAX){ if(bytes < ITEM_BUFFER_SIZE){ memcpy(d.buf, p, bytes); d.size = bytes; d.type = G711A; rb_put(task->buffer, &d); fflush(stdout); } }
h264 nalu数据帧解析可以参考live555的处理
H264VideoRTPSink.cpp
Boolean H264VideoRTPSource ::processSpecialHeader(BufferedPacket* packet, unsigned& resultSpecialHeaderSize) { unsigned char* headerStart = packet->data(); unsigned packetSize = packet->dataSize(); unsigned numBytesToSkip; // Check the 'nal_unit_type' for special 'aggregation' or 'fragmentation' packets: if (packetSize < 1) return False; fCurPacketNALUnitType = (headerStart[0]&0x1F); switch (fCurPacketNALUnitType) { case 24: { // STAP-A numBytesToSkip = 1; // discard the type byte break; } case 25: case 26: case 27: { // STAP-B, MTAP16, or MTAP24 numBytesToSkip = 3; // discard the type byte, and the initial DON break; } case 28: case 29: { // // FU-A or FU-B // For these NALUs, the first two bytes are the FU indicator and the FU header. // If the start bit is set, we reconstruct the original NAL header into byte 1: if (packetSize < 2) return False; unsigned char startBit = headerStart[1]&0x80; unsigned char endBit = headerStart[1]&0x40; if (startBit) { fCurrentPacketBeginsFrame = True; headerStart[1] = (headerStart[0]&0xE0)|(headerStart[1]&0x1F); numBytesToSkip = 1; } else { // The start bit is not set, so we skip both the FU indicator and header: fCurrentPacketBeginsFrame = False; numBytesToSkip = 2; } fCurrentPacketCompletesFrame = (endBit != 0); break; } default: { // This packet contains one complete NAL unit: fCurrentPacketBeginsFrame = fCurrentPacketCompletesFrame = True; numBytesToSkip = 0; break; } } resultSpecialHeaderSize = numBytesToSkip; return True; }
H264VideoRTPSink.cpp
H264VideoRTPSink* H264VideoRTPSink ::createNew(UsageEnvironment& env, Groupsock* RTPgs, unsigned char rtpPayloadFormat, char const* sPropParameterSetsStr) { u_int8_t* sps = NULL; unsigned spsSize = 0; u_int8_t* pps = NULL; unsigned ppsSize = 0; unsigned numSPropRecords; SPropRecord* sPropRecords = parseSPropParameterSets(sPropParameterSetsStr, numSPropRecords); for (unsigned i = 0; i < numSPropRecords; ++i) { if (sPropRecords[i].sPropLength == 0) continue; // bad data u_int8_t nal_unit_type = (sPropRecords[i].sPropBytes[0])&0x1F; if (nal_unit_type == 7/*SPS*/) { sps = sPropRecords[i].sPropBytes; spsSize = sPropRecords[i].sPropLength; } else if (nal_unit_type == 8/*PPS*/) { pps = sPropRecords[i].sPropBytes; ppsSize = sPropRecords[i].sPropLength; } } H264VideoRTPSink* result = new H264VideoRTPSink(env, RTPgs, rtpPayloadFormat, sps, spsSize, pps, ppsSize); delete[] sPropRecords; return result; }
或者h264bitstream也有h264 nalu的解析
https://www.cnblogs.com/dong1/p/10149980.html
帧属性分离
SPS: 0x67 header & 0x1F = 7
PPS: 0x68 header & 0x1F = 8
SEI: 0x66 header & 0x1F = 6
I Frame: 0x65 header & 0x1F = 5
P Frame: 0x41 header & 0x1F = 1
h264 nalu的解析偏题了,顺带提了一下,这里主要解析ps流。
2. rtp over tcp
(len)05 84 (rtp header)80 60 6d ee 00 b5 62 60 00 00 a5 f6 (ps header)00 00
01 ba 44 76 55 85 74 01 02 5f 03 fe ff ff 00 00
86 24 (pes header)00 00 01 e0 21 ba 8c 80 0a 21 1d 95 61 5d
ff ff ff ff f8 (ps payload P)00 00 00 01 61 e0 40 00 59 13 ff
01 23 44 a1 02 38 33 0f 99 df 89 95 01 9e 6d 31
00 2a 8f 05 a5 fb 96 67 38 b8 7f c5 73 bb 25 b6
96 3d 0c 15 0e a4 ed 95 30 6b 43 35 51 9a 04 a1
89 26 6a 6a fc 64 c6 44 37 2a 32 6d 16 12 41 83
53 42 d7 66 e3 51 6b 8e bc 8f 40 73 2a 22 9d a0
d7 b9 c1 ed f8 a5 14 91 2d 8e 90 07 0e b4 2e 4a
0e cb 03 4b 73 f4 1a 49 0a d3 1f bb 72 c5 28 13
b7 9b 35 a0 18 3a c0 91 73 99 1d 4c dd 3b fd eb
ce 8e 73 79 34 8a 05 6d 98 d6 a9 20 d3 43 44 d9
b3 cd be 5b f6 74 86 f4 67 26 2f a1 be fb 5c 2c
aa 81 4d 51 85 06 c7 65 82 52 47 05 5b ae 76 93
数据解析,这是个P帧
len 05 84
rtp header 80 60 6d ee 00 b5 62 60 00 00 a5 f6
ps header 00 00 01 ba ...
pes header 00 00 01 e0 ...
ps payload P 00 00 00 01 61/41 ...
RTP over TCP模式比RTP over UDP模式多了长度字段,但是通过长度信息组包,组成完整的TCP包,完整的TCP包去掉长度信息就是RTP包。然后由于tcp底层会作拆包和粘包的优化处理,所以应用层需要特殊处理,最好用jrtplib的tcp模式,jrtplib库已经处理好了拆包和粘包。
接收,解析流程 tcp--->rtp--->ps--->h264
提供一个示例代码
RTP over TCP/UDP example in jrtplib
https://www.cnblogs.com/dong1/p/12179996.html
三、设备端PS流封装和发送
既然从设备接收到的数据已经分析得比较彻底,那么如何反过来封包,分片,发送呢?
ps流封装与解析可以用libmpeg库
https://github.com/ireader/media-server/tree/master/libmpeg
熟悉ffmpeg,也可以定制ffmpeg-4.1/doc/examples/muxing.c
封好的ps buf,按FU-A的格式,每隔1400 byte切一片,每片往前添加个12 byte的rtp header,最后一个切片置位Marker,往外发就行。
rtp over tcp模式下,rtp heade前还得加2 byte长度,所以rtp over tcp头是14 byte, rtp over udp头是12byte.
各种分片细节看rfc3984 https://datatracker.ietf.org/doc/rfc3984/