• 实验三


    实验班级 机器学习
    实验名称 朴素贝叶斯算法及应用
    学号 3180701314

    实验目的

    理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
    掌握常见的高斯模型,多项式模型和伯努利模型;
    能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
    针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。

    实验内容

    实现高斯朴素贝叶斯算法。
    熟悉sklearn库中的朴素贝叶斯算法;
    针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
    针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。

    实验报告要求

    对照实验内容,撰写实验过程、算法及测试结果;
    代码规范化:命名规则、注释;
    分析核心算法的复杂度;
    查阅文献,讨论各种朴素贝叶斯算法的应用场景;
    讨论朴素贝叶斯算法的优缺点。

    实验代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = [
            'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
        ]
        data = np.array(df.iloc[:100, :])
        # print(data)
        return data[:, :-1], data[:, -1]
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    X_test[0], y_test[0]
    class NaiveBayes:
        def __init__(self):
            self.model = None
        数学期望
        @staticmethod
        def mean(X):
            return sum(X) / float(len(X))
        标准差(方差)
        def stdev(self, X):
            avg = self.mean(X)
            return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
        概率密度函数
        def gaussian_probability(self, x, mean, stdev):
            exponent = math.exp(-(math.pow(x - mean, 2) /
                                  (2 * math.pow(stdev, 2))))
            return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
        处理X_train
        def summarize(self, train_data):
            summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
            return summaries
        分类别求出数学期望和标准差
        def fit(self, X, y):
            labels = list(set(y))
            data = {label: [] for label in labels}
            for f, label in zip(X, y):
                data[label].append(f)
            self.model = {
                label: self.summarize(value)
                for label, value in data.items()
            }
            return 'gaussianNB train done!'
        计算概率
        def calculate_probabilities(self, input_data):
            # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
            # input_data:[1.1, 2.2]
            probabilities = {}
            for label, value in self.model.items():
                probabilities[label] = 1
                for i in range(len(value)):
                    mean, stdev = value[i]
                    probabilities[label] *= self.gaussian_probability(
                        input_data[i], mean, stdev)
            return probabilities
        类别
        def predict(self, X_test):
            # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
            label = sorted(
                self.calculate_probabilities(X_test).items(),
                key=lambda x: x[-1])[-1][0]
            return label
        def score(self, X_test, y_test):
            right = 0
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right += 1
            return right / float(len(X_test))
    model = NaiveBayes()
    model.fit(X_train, y_train)
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    model.score(X_test, y_test)
    from sklearn.naive_bayes import GaussianNB
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    clf.predict([[4.4, 3.2, 1.3, 0.2]])
    from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
    

    运行结果

    GaussianNB 高斯朴素贝叶斯,特征的可能性被假设为高斯
    class NaiveBayes:
        def __init__(self):
            self.model = None
            
        # 数学期望
        @staticmethod
        def mean(X):
            return sum(X) / float(len(X))
        
        # 标准差(方差)
        def stdev(self, X):
            avg = self.mean(X)
            return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
        
        # 概率密度函数
        def gaussian_probability(self, x, mean, stdev):
            exponent = math.exp(-(math.pow(x - mean, 2) /(2 * math.pow(stdev, 2))))
            return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
    
        # 处理X_train
        def summarize(self, train_data):
            summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
            return summaries
        
        # 分类别求出数学期望和标准差
        def fit(self, X, y):
            labels = list(set(y))
            data = {label: [] for label in labels}
            for f, label in zip(X, y):
                data[label].append(f)
            self.model = {label: self.summarize(value)for label, value in data.items()}
            return 'gaussianNB train done!'
        
        # 计算概率
        def calculate_probabilities(self, input_data):
            # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
            # input_data:[1.1, 2.2]
            probabilities = {}
            for label, value in self.model.items():
                probabilities[label] = 1
                for i in range(len(value)):
                    mean, stdev = value[i]
                    probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
            return probabilities
        
        # 类别
        def predict(self, X_test):
            # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
            label = sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1])[-1][0]
            return label
        
        def score(self, X_test, y_test):
            right = 0
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right += 1
                    
            return right / float(len(X_test))
    model = NaiveBayes()#生成一个算法对象
    model.fit(X_train, y_train)#将训练数据代入算法中
    
    #生成scikit-learn结果与上面手写函数的结果对比
    from sklearn.naive_bayes import GaussianNB  #导入模型
    clf = GaussianNB()
    clf.fit(X_train, y_train)#训练数据
    
    clf.score(X_test, y_test)
    
    clf.predict([[4.4, 3.2, 1.3, 0.2]])
    

    运行结果

    实验小结

    朴素贝叶斯算法逻辑简单,易于实现,分类过程中时空开销小。理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。 而在属性相关性较小时,朴素贝叶斯性能最为良好。

  • 相关阅读:
    Kubernetes之(四)kubeadm部署集群
    Kubernetes之(三)核心组件ETCD介绍
    Kubernetes之(二)核⼼技术概念和API对象
    Kubetnetes之(一)基础介绍
    docker入门基础(六)
    docker入门基础(八)
    docker入门基础(七)
    docker入门基础(五)
    docker入门基础(四)
    docker入门基础(三)
  • 原文地址:https://www.cnblogs.com/dnmd/p/14945450.html
Copyright © 2020-2023  润新知