If you think codes, eat codes then sometimes you may get stressed. In your dreams you may see huge codes, as I have seen once. Here is the code I saw in my dream.
#include <stdio.h>
int cases, caseno;
int n, K, MOD;
int A[1001];
int main() {
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d", &n, &K, &MOD);
int i, i1, i2, i3, ... , iK;
for( i = 0; i < n; i++ ) scanf("%d", &A[i]);
int res = 0;
for( i1 = 0; i1 < n; i1++ ) {
for( i2 = 0; i2 < n; i2++ ) {
for( i3 = 0; i3 < n; i3++ ) {
...
for( iK = 0; iK < n; iK++ ) {
res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD;
}
...
}
}
}
printf("Case %d: %d
", ++caseno, res);
}
return 0;
}
Actually the code was about: 'You are given three integers n, K, MOD and n integers: A0, A1, A2 ... An-1, you have to write K nested loops and calculate the summation of all Ai where i is the value of any nested loop variable.'
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with three integers: n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000). The next line contains n non-negative integers denoting A0, A1, A2 ... An-1. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case, print the case number and result of the code.
Sample Input |
Output for Sample Input |
2 3 1 35000 1 2 3 2 3 35000 1 2 |
Case 1: 6 Case 2: 36 |
结合律
|
((a+b) mod p + c)mod p = (a + (b+c) mod p) mod p
((a*b) mod p * c)mod p = (a * (b*c) mod p) mod p
|
交换律
|
(a + b) mod p = (b+a) mod p
(a × b) mod p = (b × a) mod p
|
分配律
|
((a +b)mod p × c) mod p = ((a × c) mod p + (b × c) mod p) mod p
(a×b) mod c=(a mod c * b mod c) mod c
(a+b) mod c=(a mod c+ b mod c) mod c
(a-b) mod c=(a mod c- b mod c) mod c
|
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N 11000
int mod;
ll qpow(int a, int b)
{
if(b == 0)
return 1;
ll tmp = qpow(a, b>>1);
tmp = tmp * tmp % mod;
if(b & 1)
tmp =(ll) (tmp * (a % mod) )% mod;
return tmp;
}
int main()
{
int T, cas;
int n, k;
int num[N];
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
scanf("%d%d%d", &n, &k, &mod);
ll sum = 0;
for(int i = 0; i < n; i++)
{
scanf("%d", &num[i]);
sum = (sum + num[i] % mod) % mod;
}
ll ans = qpow(n, k-1);
ll cnt = (ans % mod * k % mod * sum % mod) % mod;
printf("Case %d: %lld ", cas, cnt);
}
return 0;
}