迭代器
迭代是Python最强大的功能之一,是访问集合元素的一种方式。。
迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
迭代器有两个基本的方法:iter() 和 next()。
字符串,列表或元组对象都可用于创建迭代器:
>>> list=[1,2,3,4] >>> it = iter(list) # 创建迭代器对象 >>> print (next(it)) # 输出迭代器的下一个元素 1 >>> print (next(it)) 2 >>> print (next(it)) 3
迭代器对象可以使用常规for语句进行遍历:
[root@localhost ~]# vi test.py #!/usr/bin/python list=[1,2,3,4] it = iter(list) # 创建迭代器对象 for x in it: print (x, end=" ") [root@localhost ~]# ./test.py 1 2 3 4
也可以使用 next() 函数:
[root@localhost ~]# vi test.py #!/usr/bin/python import sys # 引入 sys 模块 list=[1,2,3,4] it = iter(list) # 创建迭代器对象 while True: try: print (next(it)) except StopIteration: sys.exit() [root@localhost ~]# ./test.py 1 2 3 4
生成器
在 Python 中,使用了 yield 的函数被称为生成器(generator)。
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x7f3a99998150> >>>
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多
的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:
>>> def odd(): ... print('step 1') ... yield 1 ... print('step 2') ... yield (3) ... print('step 3') ... yield(5) ... >>> o = odd() >>> next(o) step 1 1 >>> next(o) step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >>>
可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
yield 与 return
在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;
>>> def g1(): ... yield 1 ... >>> g=g1() >>> next(g) #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。 1 >>> next(g) #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。 Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
>>> def g2(): ... yield 'a' ... return ... yield 'b' ... >>> g=g2() >>> next(g) #程序停留在执行完yield 'a'语句后的位置。 'a' >>> next(g) #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。 Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。
生成器没有办法使用return来返回值。
>>> def g3(): ... yield 'hello' ... return 'world' ... >>> g=g3() >>> next(g) 'hello' >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration: world
以下实例使用 yield 实现斐波那契数列:
[root@localhost ~]# vi test.py #!/usr/bin/python import sys def fibonacci(n): # 生成器函数 - 斐波那契 a, b, counter = 0, 1, 0 while True: if (counter > n): return yield a a, b = b, a + b counter += 1 f = fibonacci(10) # f 是一个迭代器,由生成器返回生成 while True: try: print (next(f), end=" ") except StopIteration: sys.exit() [root@localhost ~]# ./test.py 0 1 1 2 3 5 8 13 21 34 55
end