题目链接:
http://poj.org/problem?id=2513
http://bailian.openjudge.cn/practice/2513?lang=en_US
Time Limit: 5000MS Memory Limit: 128000K
Description
You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?
Input
Input is a sequence of lines, each line contains two words, separated by spaces, giving the colors of the endpoints of one stick. A word is a sequence of lowercase letters no longer than 10 characters. There is no more than 250000 sticks.
Output
If the sticks can be aligned in the desired way, output a single line saying Possible, otherwise output Impossible.
Sample Input
blue red
red violet
cyan blue
blue magenta
magenta cyan
Sample Output
Possible
Hint
Huge input,scanf is recommended.
题意:
给出若干木棒,每个木棒两个端点有两个颜色,两个木棒的端点颜色相同,则可以接在一起。问是否把所有木棒接成一根。
题解:
(参考http://blog.csdn.net/lyy289065406/article/details/6647445)
将每个颜色都看成一个节点,木棒就能看成一条连接两个端点的无向边。问题就变成在给定一个无向图问是否存在欧拉路。
欧拉路存在的充要条件是:① 图是连通的; ② 所有节点的度为偶数,或者有仅有两个度数为奇数的节点。
这道题,求顶点的度数很好求,但是怎么判断图是否连通呢?通常来说,DFS/BFS或者并查集都能做。
不过,本题字典树的用处就是代替map,将输入字符串快速hash成一个值。
AC代码(BFS判图的连通性):
#include<bits/stdc++.h> using namespace std; const int maxn=250000+10; int degree[2*maxn]; vector<int> G[2*maxn]; namespace Trie { const int SIZE=maxn*10; int sz; int idtot; struct TrieNode{ int ed; int nxt[26]; }trie[SIZE]; void init() { idtot=0; sz=1; } int insert(const string& s) { int p=1; for(int i=0;i<s.size();i++) { int ch=s[i]-'a'; if(!trie[p].nxt[ch]) trie[p].nxt[ch]=++sz; p=trie[p].nxt[ch]; } if(!trie[p].ed) trie[p].ed=++idtot; return trie[p].ed; } }; bool vis[2*maxn]; int bfs(int s) { int res=0; memset(vis,0,sizeof(vis)); queue<int> Q; Q.push(s), vis[s]=1, res++; while(!Q.empty()) { int u=Q.front(); Q.pop(); for(int i=0;i<G[u].size();i++) { int v=G[u][i]; if(!vis[v]) Q.push(v), vis[v]=1, res++; } } return res; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); string s1,s2; Trie::init(); while(cin>>s1>>s2) { int u=Trie::insert(s1), v=Trie::insert(s2); G[u].push_back(v); G[v].push_back(u); degree[u]++; degree[v]++; } int cnt=0; for(int i=1;i<=Trie::idtot;i++) { if(degree[i]%2) cnt++; } if(cnt==1 || cnt>2) cout<<"Impossible "; else { if(bfs(1)<Trie::idtot) cout<<"Impossible "; else cout<<"Possible "; } }
AC代码(并查集判图的连通性):
#include<cstdio> #include<cstring> using namespace std; const int maxn=250000+5; namespace Trie { const int SIZE=maxn*10; int sz; int idcnt; struct TrieNode{ int ed; int nxt[26]; }trie[SIZE]; void init() { idcnt=0; sz=1; } int insert(char *s) { int len=strlen(s), p=1; for(int i=0;i<len;i++) { int ch=s[i]-'a'; if(!trie[p].nxt[ch]) trie[p].nxt[ch]=++sz; p=trie[p].nxt[ch]; } return (trie[p].ed)?(trie[p].ed):(trie[p].ed=++idcnt); } }; int par[2*maxn],ran[2*maxn]; int find(int x){return (par[x]==x)?x:(par[x]=find(par[x]));} void unite(int x,int y) { x=find(x), y=find(y); if(x==y) return; if(ran[x]<ran[y]) par[x]=y; else par[y]=x, ran[x]+=(ran[x]==ran[y]); } int degree[2*maxn]; int main() { Trie::init(); memset(degree,0,sizeof(degree)); for(int i=1;i<2*maxn;i++) par[i]=i,ran[i]=0; char s[2][13]; while(scanf("%s %s",s[0],s[1])!=EOF) { int u=Trie::insert(s[0]); int v=Trie::insert(s[1]); if(find(u)!=find(v)) unite(u,v); degree[u]++; degree[v]++; } int cnt=0; int z=find(1); for(int i=1;i<=Trie::idcnt;i++) { if(find(i)!=z) { printf("Impossible "); return 0; } if(degree[i]%2) cnt++; if(cnt>2) { printf("Impossible "); return 0; } } if(cnt==1) { printf("Impossible "); return 0; } else { printf("Possible "); return 0; } }