• ELK原理与介绍


    转自:https://www.cnblogs.com/aresxin/p/8035137.html

    为什么用到ELK:

    一般我们需要进行日志分析场景:直接在日志文件中 grep、awk 就可以获得自己想要的信息。但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。需要集中化的日志管理,所有服务器上的日志收集汇总。常见解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。

    一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

    一个完整的集中式日志系统,需要包含以下几个主要特点:

    • 收集-能够采集多种来源的日志数据
    • 传输-能够稳定的把日志数据传输到中央系统
    • 存储-如何存储日志数据
    • 分析-可以支持 UI 分析
    • 警告-能够提供错误报告,监控机制

    ELK提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。

    ELK简介:

    ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少,适合于在各个服务器上搜集日志后传输给Logstash,官方也推荐此工具。

    Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

    Logstash 主要是用来日志的搜集、分析、过滤日志的工具,支持大量的数据获取方式。一般工作方式为c/s架构,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch上去。

    Kibana 也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。

    Filebeat隶属于Beats。目前Beats包含四种工具:

      1. Packetbeat(搜集网络流量数据)
      2. Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
      3. Filebeat(搜集文件数据)
      4. Winlogbeat(搜集 Windows 事件日志数据)

    官方文档:

    Filebeat:

    https://www.elastic.co/cn/products/beats/filebeat
    https://www.elastic.co/guide/en/beats/filebeat/5.6/index.html

    Logstash:
    https://www.elastic.co/cn/products/logstash
    https://www.elastic.co/guide/en/logstash/5.6/index.html

    Kibana:

    https://www.elastic.co/cn/products/kibana

    https://www.elastic.co/guide/en/kibana/5.5/index.html

    Elasticsearch:
    https://www.elastic.co/cn/products/elasticsearch
    https://www.elastic.co/guide/en/elasticsearch/reference/5.6/index.html

    elasticsearch中文社区:
    https://elasticsearch.cn/

    ELK架构图:

    架构图一:

    这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。

    此架构由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web方便的对日志查询,并根据数据生成报表。

    架构图二:

    此种架构引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。

    架构图三:

    此种架构将收集端logstash替换为beats,更灵活,消耗资源更少,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询。

    Filebeat工作原理:

    Filebeat由两个主要组件组成:prospectorsharvesters。这两个组件协同工作将文件变动发送到指定的输出中。

    Harvester(收割机):负责读取单个文件内容。每个文件会启动一个Harvester,每个Harvester会逐行读取各个文件,并将文件内容发送到制定输出中。Harvester负责打开和关闭文件,意味在Harvester运行的时候,文件描述符处于打开状态,如果文件在收集中被重命名或者被删除,Filebeat会继续读取此文件。所以在Harvester关闭之前,磁盘不会被释放。默认情况filebeat会保持文件打开的状态,直到达到close_inactive(如果此选项开启,filebeat会在指定时间内将不再更新的文件句柄关闭,时间从harvester读取最后一行的时间开始计时。若文件句柄被关闭后,文件发生变化,则会启动一个新的harvester。关闭文件句柄的时间不取决于文件的修改时间,若此参数配置不当,则可能发生日志不实时的情况,由scan_frequency参数决定,默认10s。Harvester使用内部时间戳来记录文件最后被收集的时间。例如:设置5m,则在Harvester读取文件的最后一行之后,开始倒计时5分钟,若5分钟内文件无变化,则关闭文件句柄。默认5m)。

    Prospector(勘测者):负责管理Harvester并找到所有读取源。

    1
    2
    3
    4
    filebeat.prospectors:
    - input_type: log
      paths:
        - /apps/logs/*/info.log

    Prospector会找到/apps/logs/*目录下的所有info.log文件,并为每个文件启动一个Harvester。Prospector会检查每个文件,看Harvester是否已经启动,是否需要启动,或者文件是否可以忽略。若Harvester关闭,只有在文件大小发生变化的时候Prospector才会执行检查。只能检测本地的文件。

    Filebeat如何记录文件状态:

    将文件状态记录在文件中(默认在/var/lib/filebeat/registry)。此状态可以记住Harvester收集文件的偏移量。若连接不上输出设备,如ES等,filebeat会记录发送前的最后一行,并再可以连接的时候继续发送。Filebeat在运行的时候,Prospector状态会被记录在内存中。Filebeat重启的时候,利用registry记录的状态来进行重建,用来还原到重启之前的状态。每个Prospector会为每个找到的文件记录一个状态,对于每个文件,Filebeat存储唯一标识符以检测文件是否先前被收集。

    Filebeat如何保证事件至少被输出一次:

    Filebeat之所以能保证事件至少被传递到配置的输出一次,没有数据丢失,是因为filebeat将每个事件的传递状态保存在文件中。在未得到输出方确认时,filebeat会尝试一直发送,直到得到回应。若filebeat在传输过程中被关闭,则不会再关闭之前确认所有时事件。任何在filebeat关闭之前为确认的时间,都会在filebeat重启之后重新发送。这可确保至少发送一次,但有可能会重复。可通过设置shutdown_timeout 参数来设置关闭之前的等待事件回应的时间(默认禁用)。

     

    Logstash工作原理:

    Logstash事件处理有三个阶段:inputs → filters → outputs。是一个接收,处理,转发日志的工具。支持系统日志,webserver日志,错误日志,应用日志,总之包括所有可以抛出来的日志类型。

    Input:输入数据到logstash。

    一些常用的输入为:

    file:从文件系统的文件中读取,类似于tial -f命令

    syslog:在514端口上监听系统日志消息,并根据RFC3164标准进行解析

    redis:从redis service中读取

    beats:从filebeat中读取

    Filters:数据中间处理,对数据进行操作。

    一些常用的过滤器为:

    grok:解析任意文本数据,Grok 是 Logstash 最重要的插件。它的主要作用就是将文本格式的字符串,转换成为具体的结构化的数据,配合正则表达式使用。内置120多个解析语法。

    官方提供的grok表达式:https://github.com/logstash-plugins/logstash-patterns-core/tree/master/patterns
    grok在线调试:https://grokdebug.herokuapp.com/

    mutate:对字段进行转换。例如对字段进行删除、替换、修改、重命名等。

    drop:丢弃一部分events不进行处理。

    clone:拷贝 event,这个过程中也可以添加或移除字段。

    geoip:添加地理信息(为前台kibana图形化展示使用)

    Outputs:outputs是logstash处理管道的最末端组件。一个event可以在处理过程中经过多重输出,但是一旦所有的outputs都执行结束,这个event也就完成生命周期。

    一些常见的outputs为:

    elasticsearch:可以高效的保存数据,并且能够方便和简单的进行查询。

    file:将event数据保存到文件中。

    graphite:将event数据发送到图形化组件中,一个很流行的开源存储图形化展示的组件。

    Codecs:codecs 是基于数据流的过滤器,它可以作为input,output的一部分配置。Codecs可以帮助你轻松的分割发送过来已经被序列化的数据。

    一些常见的codecs:

    json:使用json格式对数据进行编码/解码。

    multiline:将汇多个事件中数据汇总为一个单一的行。比如:java异常信息和堆栈信息。

  • 相关阅读:
    c# 委托
    datagrid加下拉列表dropdownlist
    MySQL存储过程的基本函数(三)
    MySQL存储过程详解 mysql 存储过程(二)
    MySQL存储过程(一)
    SFTP 文件上传下载引用代码
    JAVA SFTP文件上传、下载及批量下载
    java中遍历MAP的几种方法
    POSTGRESQL 导入导出
    db2move 数据导出整理
  • 原文地址:https://www.cnblogs.com/digod/p/10512147.html
Copyright © 2020-2023  润新知