• Trie树:应用于统计和排序


    http://blog.csdn.net/hguisu/article/details/8131559

    http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/cedar/

    https://github.com/adamzy/cedar-go

    http://dongxicheng.org/structure/trietree/

    1、 概述

    Trie树,又称字典树,单词查找树或者前缀树,是一种用于快速检索的多叉树结构,如英文字母的字典树是一个26叉树,数字的字典树是一个10叉树。

    Trie一词来自retrieve,发音为/tri:/ “tree”,也有人读为/traɪ/ “try”。

    Trie树可以利用字符串的公共前缀来节约存储空间。如下图所示,该trie树用10个节点保存了6个字符串tea,ten,to,in,inn,int:

    在该trie树中,字符串in,inn和int的公共前缀是“in”,因此可以只存储一份“in”以节省空间。当然,如果系统中存在大量字符串且这些字符串基本没有公共前缀,则相应的trie树将非常消耗内存,这也是trie树的一个缺点。

    Trie树的基本性质可以归纳为:

    (1)根节点不包含字符,除根节点意外每个节点只包含一个字符。

    (2)从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。

    (3)每个节点的所有子节点包含的字符串不相同。

    2、 Trie树的基本实现

    字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。至于结点对儿子的指向,一般有三种方法:

    1、对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号;

    2、对每个结点挂一个链表,按一定顺序记录每个儿子是谁;

    3、使用左儿子右兄弟表示法记录这棵树。

    三种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,较易实现,空间要求相对较小,但比较费时;第三种,空间要求最小,但相对费时且不易写。

    下面给出动态开辟内存的实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    #define MAX_NUM 26
    enum NODE_TYPE{ //"COMPLETED" means a string is generated so far.
      COMPLETED,
      UNCOMPLETED
    };
    struct Node {
      enum NODE_TYPE type;
      char ch;
      struct Node* child[MAX_NUM]; //26-tree->a, b ,c, .....z
    };
     
    struct Node* ROOT; //tree root
     
    struct Node* createNewNode(char ch){
      // create a new node
      struct Node *new_node = (struct Node*)malloc(sizeof(struct Node));
      new_node->ch = ch;
      new_node->type == UNCOMPLETED;
      int i;
      for(i = 0; i < MAX_NUM; i++)
        new_node->child[i] = NULL;
      return new_node;
    }
     
    void initialization() {
    //intiazation: creat an empty tree, with only a ROOT
    ROOT = createNewNode(' ');
    }
     
    int charToindex(char ch) { //a "char" maps to an index<br>
    return ch - 'a';
    }
     
    int find(const char chars[], int len) {
      struct Node* ptr = ROOT;
      int i = 0;
      while(i < len) {
       if(ptr->child[charToindex(chars[i])] == NULL) {
       break;
      }
      ptr = ptr->child[charToindex(chars[i])];
      i++;
      }
      return (i == len) && (ptr->type == COMPLETED);
    }
     
    void insert(const char chars[], int len) {
      struct Node* ptr = ROOT;
      int i;
      for(i = 0; i < len; i++) {
       if(ptr->child[charToindex(chars[i])] == NULL) {
        ptr->child[charToindex(chars[i])] = createNewNode(chars[i]);
      }
      ptr = ptr->child[charToindex(chars[i])];
    }
      ptr->type = COMPLETED;
    }

    3、 Trie树的高级实现

    可以采用双数组(Double-Array)实现。利用双数组可以大大减小内存使用量,具体实现细节见参考资料(5)(6)。

    4、 Trie树的应用

    Trie是一种非常简单高效的数据结构,但有大量的应用实例。

    (1) 字符串检索

    事先将已知的一些字符串(字典)的有关信息保存到trie树里,查找另外一些未知字符串是否出现过或者出现频率。

    举例:

    @  给出N 个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。

    @  给出一个词典,其中的单词为不良单词。单词均为小写字母。再给出一段文本,文本的每一行也由小写字母构成。判断文本中是否含有任何不良单词。例如,若rob是不良单词,那么文本problem含有不良单词。

    (2)字符串最长公共前缀

    Trie树利用多个字符串的公共前缀来节省存储空间,反之,当我们把大量字符串存储到一棵trie树上时,我们可以快速得到某些字符串的公共前缀。

    举例:

    @ 给出N 个小写英文字母串,以及Q 个询问,即询问某两个串的最长公共前缀的长度是多少?

    解决方案:首先对所有的串建立其对应的字母树。此时发现,对于两个串的最长公共前缀的长度即它们所在结点的公共祖先个数,于是,问题就转化为了离线(Offline)的最近公共祖先(Least Common Ancestor,简称LCA)问题。

    而最近公共祖先问题同样是一个经典问题,可以用下面几种方法:

    1. 利用并查集(Disjoint Set),可以采用采用经典的Tarjan 算法;

    2. 求出字母树的欧拉序列(Euler Sequence )后,就可以转为经典的最小值查询(Range Minimum Query,简称RMQ)问题了;

    (关于并查集,Tarjan算法,RMQ问题,网上有很多资料。)

    (3)排序

    Trie树是一棵多叉树,只要先序遍历整棵树,输出相应的字符串便是按字典序排序的结果。

    举例:

    @ 给你N 个互不相同的仅由一个单词构成的英文名,让你将它们按字典序从小到大排序输出。

    (4) 作为其他数据结构和算法的辅助结构

    如后缀树,AC自动机等

    5、 Trie树复杂度分析

    (1) 插入、查找的时间复杂度均为O(N),其中N为字符串长度。

    (2) 空间复杂度是26^n级别的,非常庞大(可采用双数组实现改善)。

    6、 总结

    Trie树是一种非常重要的数据结构,它在信息检索,字符串匹配等领域有广泛的应用,同时,它也是很多算法和复杂数据结构的基础,如后缀树,AC自动机等,因此,掌握Trie树这种数据结构,对于一名IT人员,显得非常基础且必要!

    7、 参考资料

    (1)wiki:http://en.wikipedia.org/wiki/Trie

    (2) 博文《字典树的简介及实现》:

    http://hi.baidu.com/luyade1987/blog/item/2667811631106657f2de320a.html

    (3) 论文《浅析字母树在信息学竞赛中的应用》

    (4)  论文《Trie图的构建、活用与改进》

    (5)  博文《An Implementation of Double-Array Trie》:

    http://linux.thai.net/~thep/datrie/datrie.html

    (6) 论文《An Efficient Implementation of Trie Structures》:

    http://www.google.com.hk/url?sa=t&source=web&cd=4&ved=0CDEQFjAD&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.14.8665%26rep%3Drep1%26type%3Dpdf&ei=qaehTZiyJ4u3cYuR_O4B&usg=AFQjCNF5icQbRO8_WKRd5lMh-eWFIty_fQ&sig2=xfqSGYHBKqOLXjdONIQNVw

  • 相关阅读:
    C++编程开发学习的50条建议(转)
    编程思想:我现在是这样编程的(转)
    Linux系统编程@多线程与多进程GDB调试
    字符串分割函数 STRTOK & STRTOK_R (转)
    C语言指针与数组的定义与声明易错分析
    C语言 a和&a的区别
    C语言二重指针与malloc
    【C语言入门】C语言的组成结构(基础完整篇)!
    程序员吐槽女友败家:开酒店必须400元起步,工资却不到自己的一半!
    怎样才能和编程语言对上眼?你需要做些准备以及...
  • 原文地址:https://www.cnblogs.com/diegodu/p/5266685.html
Copyright © 2020-2023  润新知