• [LeetCode] N-Queens


    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

    Given an integer n, return all distinct solutions to the n-queens puzzle.

    Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

    For example,
    There exist two distinct solutions to the 4-queens puzzle:

    [
     [".Q..",  // Solution 1
      "...Q",
      "Q...",
      "..Q."],
    
     ["..Q.",  // Solution 2
      "Q...",
      "...Q",
      ".Q.."]
    ]
    
    Show Tags
     
    思路:递归,dfs,回溯法
     
    首先实现了一个n皇后的dfs,X[i] 表示第i行所处的位置
    #define N 4
    
    vector<int> x;
    
    bool checkTwoPoints(int i, int j, int xi, int xj) 
    {
        //cout << "check i	" << i << endl;
        //cout << "check j	" << j << endl;
        if(xi == xj) // same column
            return false;
        if( abs(xi-xj) == abs(i-j)) // diag
            return false;
        return true;
    }
    
    bool check(vector<int> x, int n) // check x[n] and x[0 .. n-1]
    {
        for(int i = 0; i < n; i++)
        {   
            if(!checkTwoPoints(i, n, x[i], x[n]))
                return false;
        }   
        return true;
    }
    
    void dfs(int n)
    {
        if(n == N)
            printVector(x);
    
        for(int i = 0; i < N; i++)
        {
            x[n] = i;
    
            // check if x[n] is available
            if(check(x, n))
                dfs(n+1);
        }
    
    }
    
    int main()
    {
        x.resize(N);
        dfs(0);
    #if 0
        Solution sl;
        printVector (sl.plusOne(a));
        cout <<endl<< "==============" <<endl;
        a.clear();
    #endif
        return 0;
    }

    然后考虑按照其格式打印字符串

    class Solution {
        vector<int> x;
        vector< vector<string>  > m_res;
    
        bool checkTwoPoints(int i, int j, int xi, int xj)
        {
            //cout << "check i	" << i << endl;
            //cout << "check j	" << j << endl;
            if(xi == xj) // same column
                return false;
            if( abs(xi-xj) == abs(i-j)) // diag
                return false;
            return true;
        }
    
        bool check(vector<int> x, int n) // check x[n] and x[0 .. n-1]
        {
            for(int i = 0; i < n; i++)
            {
                if(!checkTwoPoints(i, n, x[i], x[n]))
                    return false;
            }
            return true;
        }
    
        void dfs(int n)
        {
            if(n == x.size() )
            {
    #if 1
                //printVector(x);
    
                string tmpStr;
                vector<string> strs;
                strs.resize(x.size());
                for(int i = 0; i < x.size(); i++)
                    tmpStr += '.';
    
                for(int i = 0; i < x.size(); i++)
                {
                    strs[i] = tmpStr;
                    strs[i][x[i]] = 'Q';
                }
                m_res.push_back(strs);
                return;
    #endif
            }
    
            for(int i = 0; i < x.size(); i++)
            {
                x[n] = i;
    
                // check if x[n] is available
                if(check(x, n))
                    dfs(n+1);
            }
    
        }
        public:
        vector<vector<string> > solveNQueens(int n)
        {
            x.resize(n);
            dfs(0);
            return m_res;
        }
    };
  • 相关阅读:
    []Xcode中的iOS模拟器
    飞凌百套OK335xS-2开发平台免费申请
    FastDFS整合Nginx
    阿里云服务器Centos7安装FastDFS(一)
    进程调度
    Tomcat一
    SpringBoot初探
    Java中的日志框架
    JVM类加载之创建对象的过程
    JVM类加载机制二
  • 原文地址:https://www.cnblogs.com/diegodu/p/4313611.html
Copyright © 2020-2023  润新知