The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
分析:首先想到的是回溯法的排列树+计数,但是排列树并不符合next_permutation 的关系,所以只能使用时间复杂度O(n^n)的排序树。。每个位置都有n中可能,记录下已经使用的数字,然后从未使用的数据中选择,然后递归调用,其实使用的还是回溯法的框架,有所更改。
上Code,但是大数时会超时。。
1 class Solution { 2 vector<bool> m_avaliable; 3 int m_k; 4 int m_cnt; 5 vector<int> m_array; 6 public: 7 string m_str; 8 9 void dfs_permutation(int size, int dep) 10 { 11 if(dep == size) 12 { 13 m_cnt ++; 14 if(m_cnt == m_k) 15 { 16 for(int i = 0; i < size; i++) 17 { 18 m_str += m_array[i] + '1'; 19 } 20 return; 21 } 22 } 23 24 //dfs to the next level 25 // every level has size choices, its time complexity is O(n^n) 26 for(int i = 0; i < size; i++) 27 { 28 if( m_avaliable[i] == true) 29 { 30 //cout <<"dep = " <<dep <<endl; 31 //cout <<"i = " <<i <<endl; 32 m_array[dep] = i; 33 m_avaliable[i] = false; 34 dfs_permutation( size, dep+1); 35 m_avaliable[i] = true; 36 } 37 38 } 39 40 41 42 } 43 string getPermutation(int n, int k) 44 { 45 //initinalize the member variable 46 m_avaliable.resize(n, true); 47 m_array.resize(n); 48 m_k = k; 49 m_cnt = 0; 50 m_str.clear(); 51 52 //call dfs 53 dfs_permutation(n, 0); 54 55 // return 56 return m_str; 57 } 58 59 };
方法二:基于 next permutation的方法的计算,复杂度O(n),不会超时,空间复杂度O(1)
1 class Solution { 2 public: 3 string getPermutation(int n, int k) 4 { 5 k--; 6 7 string s; 8 vector<int> container; 9 vector<int> res; 10 11 for(int i = 1; i <=n; i++) 12 { 13 container.push_back(i); 14 } 15 //printVector(container); 16 17 for(int i = n-1; i >=0; i--) 18 { 19 int index = k/calcFactorial(i); 20 int value = container[index]; 21 res.push_back(value); 22 23 24 vector<int>::iterator findit = find(container.begin(),container.end(),value); 25 container.erase(findit); 26 k = k%calcFactorial(i); 27 #if 0 28 cout << "===================================" <<endl; 29 cout << "i = " << i <<endl; 30 cout << "index = " << index <<endl; 31 printVector(container); 32 printVector(res); 33 cout << "===================================" <<endl; 34 #endif 35 } 36 //printVector(res); 37 38 for(int i = 0; i <res.size(); i++) 39 { 40 s += res[i] + '0'; 41 } 42 return s; 43 } 44 45 int calcFactorial(int n) 46 { 47 if(n == 0 || n == 1) 48 return 1; 49 int sum = 1; 50 for(int i = 2; i <= n; i++) 51 sum *= i; 52 return sum; 53 } 54 55 };