前中后遍历 递归版
1 /* Recursive solution */ 2 class Solution { 3 public: 4 vector<int> preorderTraversal(TreeNode *root) { 5 6 vector<int> result; 7 preorderTraversal(root, result); 8 9 return result; 10 } 11 12 void preorderTraversal(TreeNode *root, vector<int>& result) 13 { 14 if(root == NULL) return; 15 result.push_back(root->val); 16 17 preorderTraversal(root->left, result); 18 preorderTraversal(root->right, result); 19 } 20 21 };
1 /* Recursive solution */ 2 class Solution { 3 public: 4 vector<int> inorderTraversal(TreeNode *root) { 5 6 vector<int> result; 7 inorderTraversal(root, result); 8 9 return result; 10 } 11 12 void inorderTraversal(TreeNode *root, vector<int>& result) 13 { 14 if(root == NULL) return; 15 16 inorderTraversal(root->left, result); 17 result.push_back(root->val); 18 inorderTraversal(root->right, result); 19 } 20 21 };
1 /* Recursive solution */ 2 class Solution { 3 public: 4 vector<int> postorderTraversal(TreeNode *root) { 5 6 vector<int> result; 7 postorderTraversal(root, result); 8 9 return result; 10 } 11 12 void postorderTraversal(TreeNode *root, vector<int>& result) 13 { 14 if(root == NULL) return; 15 16 postorderTraversal(root->left, result); 17 result.push_back(root->val); 18 postorderTraversal(root->right, result); 19 } 20 21 };
下面是迭代版本
1 preorder: 节点入栈一次, 入栈之前访问。
2 inorder:节点入栈一次,出栈之后访问。
3 postorder:节点入栈2次,第二次出战后访问。
1 class Solution { 2 public: 3 vector<int> preorderTraversal(TreeNode *root) { 4 5 vector<int> result; 6 stack<TreeNode*> stack; 7 8 TreeNode *p = root; 9 10 while( NULL != p || !stack.empty()) 11 { 12 while(NULL != p) 13 { 14 result.push_back(p->val); 15 16 stack.push(p); 17 p = p->left; 18 } 19 20 if(!stack.empty()) 21 { 22 p= stack.top(); 23 stack.pop(); 24 25 p=p->right; 26 } 27 } 28 29 return result; 30 } 31 32 };
1 class Solution { 2 public: 3 vector<int> inorderTraversal(TreeNode *root) { 4 5 vector<int> result; 6 stack<TreeNode*> stack; 7 8 TreeNode *p = root; 9 10 while( NULL != p || !stack.empty()) 11 { 12 while(NULL != p) 13 { 14 stack.push(p); 15 p = p->left; 16 } 17 18 if(!stack.empty()) 19 { 20 p= stack.top(); 21 stack.pop(); 22 23 result.push_back(p->val); 24 25 p=p->right; 26 } 27 } 28 29 return result; 30 } 31 32 };
后续, 用bStack标记是否是第一次访问,如果是第一次访问,再次入栈,否则直接访问,记得将P = NULL;
1 class Solution { 2 public: 3 vector<int> postorderTraversal(TreeNode *root) { 4 5 vector<int> result; 6 stack<TreeNode*> stack; 7 std::stack<bool> bStack; 8 9 TreeNode *p = root; 10 bool isFirst; 11 12 while( NULL != p || !stack.empty()) 13 { 14 while(NULL != p) 15 { 16 stack.push(p); 17 bStack.push(false); 18 p = p->left; 19 } 20 21 if(!stack.empty()) 22 { 23 p= stack.top(); 24 stack.pop(); 25 26 isFirst = bStack.top(); 27 bStack.pop(); 28 29 if(isFirst == 0) 30 { 31 stack.push(p); 32 bStack.push(true); 33 p=p->right; 34 } 35 else 36 { 37 result.push_back(p->val); 38 p = NULL; 39 } 40 41 } 42 } 43 44 return result; 45 } 46 47 };
另外一种前序迭代实现
1 class Solution { 2 public: 3 vector<int> preorderTraversal(TreeNode *root) { 4 vector<int> result; 5 const TreeNode *p; 6 stack<const TreeNode *> s; 7 p = root; 8 if (p != nullptr) s.push(p); 9 while (!s.empty()) { 10 p = s.top(); 11 s.pop(); 12 result.push_back(p->val); 13 if (p->right != nullptr) s.push(p->right); 14 if (p->left != nullptr) s.push(p->left); 15 } 16 return result; 17 } 18 };
Morris 遍历
morris分为3个步骤,建立link,访问最左节点,删除link,morris前序和中序遍历只要调整在那里visit节点即可,框架相同。。
可以参考:http://www.cnblogs.com/AnnieKim/archive/2013/06/15/MorrisTraversal.html
Morris算法与递归和使用栈空间遍历的思想不同,它使用二叉树中的叶节点的right指针来保存后面将要访问的节点的信息,当这个right指针使用完成之后,再将它置为NULL,但是在访问过程中有些节点会访问两次,所以与递归的空间换时间的思路不同,Morris则是使用时间换空间的思想,先来看看Morris中序遍历二叉树的算法实现:
1 Morris 中序遍历
class Solution { public: void morris_inorder(TreeNode* T) { TreeNode *p, *temp; p = T; while(p) { if(p->left == NULL) { printf("%4d ", p->val); p = p->right; } else { temp = p->left; // find the most right node of the p's left node while(temp->right != NULL && temp->right != p) { temp = temp->right; } if(temp->right == NULL) { temp->right = p; p = p->left; } else { printf("%4d ", p->val); temp->right = NULL; p = p->right; } } } } };
同时, 以 下面的二叉树为例,走一遍流程:
4
/
2 7
/ /
1 3 5 8
p指向4, temp指向2,然后while Loop,tmp指向3, 3->right = 4, p = p->left=2; 建立链接
p指向2, tmp指向1, 然后while Loop,tmp指向1, 1->right = 2, p = p->left = 1;建立链接
p指向1, 由于p->left == NULL,visit(1), p = p ->right = 2,
p指向2, tmp指向1, 然后while Loop,tmp指向1, visit(2), 1->right = NULL, p = p->right = 3;断开链接
p指向3, 由于p->left == NULL,visit(3), p = p ->right = 4,
p指向4, tmp指向2, 然后while Loop,tmp指向3, visit(4), 3->right = NULL, p = p->right = 7;断开链接
p指向7, tmp指向5, 然后while Loop,tmp指向5, 5->right = 7, p = p->left = 5;建立链接
p指向5, 由于p->left == NULL,visit(5), p = p ->right = 7,
p指向7, tmp指向5, 然后while Loop,tmp指向5, visit(7), 5->right = NULL, p = p->right = 8;断开链接
p指向8, 由于p->left == NULL,visit(3), p = p ->right = NULL,
退出循环
加上些打印信息,更好理解
class Solution { public: void morris_inorder(TreeNode* T) { TreeNode *p, *temp; p = T; while(p) { if(p->left == NULL) { printf("visit %4d ", p->val); p = p->right; } else { temp = p->left; // find the most right node of the p's left node while(temp->right != NULL && temp->right != p) { temp = temp->right; } if(temp->right == NULL) { cout << "build link for " << temp->val <<"-->" << p->val << endl; temp->right = p; p = p->left; } else { printf("visit %4d ", p->val); cout << "destory link for " << temp->val <<"-->" << p->val << endl; temp->right = NULL; p = p->right; } } } } }; build link for 3-->4 build link for 1-->2 visit 1 visit 2 destory link for 1-->2 visit 3 visit 4 destory link for 3-->4 build link for 5-->7 visit 5 visit 7 destory link for 5-->7 visit 8
morris 前序遍历
void morris_preorder(TreeNode* T) { TreeNode *p, *temp; p = T; while(p) { if(p->left == NULL) {//visit the leftmost leaf node printf("visit %4d ", p->val); p = p->right; } else { temp = p->left; // find the most right node of the p's left node while(temp->right != NULL && temp->right != p) { temp = temp->right; } if(temp->right == NULL) {//build the link printf("visit %4d ", p->val); temp->right = p; p = p->left; } else {//remove the link temp->right = NULL; p = p->right; } } } }
3 morris 后序遍历
这里的reverse 和reverse单链表意思相同,另外之所以使用链表的reverse,而没有采用辅助stack后者vector是考虑要求空间复杂度O(1)的考虑
void reverse(TreeNode *from, TreeNode *to) // reverse the tree nodes 'from' -> 'to'. { if (from == to) return; TreeNode *x = from, *y = from->right, *z; while (true) { z = y->right; y->right = x; x = y; y = z; if (x == to) break; } } void printReverse(TreeNode* from, TreeNode *to) // print the reversed tree nodes 'from' -> 'to'. { reverse(from, to); TreeNode *p = to; while (true) { printf("%d ", p->val); if (p == from) break; p = p->right; } reverse(to, from); } void postorderMorrisTraversal(TreeNode *root) { TreeNode dump(0); dump.left = root; TreeNode *cur = &dump, *prev = NULL; while (cur) { if (cur->left == NULL) { cur = cur->right; } else { prev = cur->left; while (prev->right != NULL && prev->right != cur) prev = prev->right; if (prev->right == NULL) { prev->right = cur; cur = cur->left; } else { printReverse(cur->left, prev); // call print prev->right = NULL; cur = cur->right; } } } }
还是以上述bst为例,走一遍code:
p指向dummy, temp指向4,然后while Loop,tmp指向8, 8->right = dummy, p = p->left=4; 建立链接
p指向4, temp指向2,然后while Loop,tmp指向3, 3->right = 4, p = p->left=2; 建立链接
p指向2, tmp指向1, 然后while Loop,tmp指向1, 1->right = 2, p = p->left = 1;建立链接
p指向1, 由于p->left == NULL, p = p ->right = 2,
p指向2, tmp指向1, 然后while Loop,tmp指向1, reversePrint(1,1), 1->right = NULL, p = p->right = 3;断开链接
p指向3, 由于p->left == NULL, p = p ->right = 4,
p指向4, tmp指向2, 然后while Loop,tmp指向3, reversePrint(2,3), 3->right = NULL, p = p->right = 7;断开链接
p指向7, tmp指向5, 然后while Loop,tmp指向5, 5->right = 7, p = p->left = 5;建立链接
p指向5, 由于p->left == NULL, p = p ->right = 7,
p指向7, tmp指向5, 然后while Loop,tmp指向5, reversePrint(5,5), 5->right = NULL, p = p->right = 8;断开链接
p指向8, 由于p->left == NULL,, p = p ->right = dummy,
p指向dummy, tmp指向4, 然后while Loop,tmp指向8, reversePrint(4,8), 8->right = NULL, p = p->right = null;断开链接
退出循环