• Python数据可视化之matplotlib实践 源码 第一篇 入门 第一章


    最近手上有需要用matplotlib画图的活,在网上淘了本实践书,发现没有代码,于是手敲了一遍,mark下。

    第一篇    第一章

    图1.1

    import matplotlib.pyplot as plt
    import numpy as np
    
    from matplotlib import cm as cm
    
    #define data
    x=np.linspace(0.5, 3.5, 100)
    y=np.sin(x)
    y1=np.random.randn(100)
    
    #scatter figure
    plt.scatter(x, y1, c='0.25', label='scatter figure')
    
    #plot figure
    plt.plot(x, y, ls='--', lw=2, label='plot figure')
    
    #some clean up
    #去掉上边框和有边框
    for spine in plt.gca().spines.keys():
        if spine=='top' or spine=='right':
            plt.gca().spines[spine].set_color('none')
            
    # x轴的刻度在下边框        
    plt.gca().xaxis.set_ticks_position('bottom')
    
    # y轴的刻度在左边框
    plt.gca().yaxis.set_ticks_position('left')
    
    #设置x轴、y轴范围
    plt.xlim(0.0, 4.0)
    plt.ylim(-3.0, 3.0)
    
    #设置x轴、y轴标签
    plt.xlabel('x_axis')
    plt.ylabel('y_axis')
    
    #绘制x、y轴网格
    plt.grid(True, ls=':', color='r')
    
    #绘制水平参考线
    plt.axhline(y=0.0, c='r', ls='--', lw=2)
    
    #绘制垂直参考区域
    plt.axvspan(xmin=1.0, xmax=2.0, facecolor='y', alpha=0.5)
    
    #绘制注解
    plt.annotate('maximum', xy=(np.pi/2, 1.0), xytext=((np.pi/2)+0.15, 1.5), 
                 weight='bold', color='r', arrowprops=dict(arrowstyle='->', 
                 connectionstyle='arc3', color='r'))
    
    #绘制注解
    plt.annotate('spines', xy=(0.75, -3), xytext=(0.35, -2.25), 
                 weight='bold', color='r', arrowprops=dict(arrowstyle='->', 
                 connectionstyle='arc3', color='r'))
    
    #绘制注解
    plt.annotate('', xy=(0, -2.78), xytext=(0.4, -2.32), 
                 weight='bold', color='r', arrowprops=dict(arrowstyle='->', 
                 connectionstyle='arc3', color='r'))
    
    #绘制注解
    plt.annotate('', xy=(3.5, -2.98), xytext=(3.6, -2.7), 
                 weight='bold', color='r', arrowprops=dict(arrowstyle='->', 
                 connectionstyle='arc3', color='r'))
    
    #绘制文本
    plt.text(3.6, -2.70, "'|' is tickline", weight='bold', color='b')
    plt.text(3.6, -2.95, "3.5 is tickline", weight='bold', color='b')
    
    
    plt.title("structure of matplotlib")
    
    plt.legend(loc='upper right')
    
    plt.show()
    View Code

    =======================================================

     

    图 1.2

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.cos(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图 1.3

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.random.rand(1000)
    
    plt.scatter(x,y,label='scatter figure')
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图1.4 

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.random.rand(1000)
    
    plt.scatter(x,y,label='scatter figure')
    
    plt.legend()
    
    plt.xlim(0.05, 10)
    plt.ylim(0, 1)
    
    plt.show()
    View Code

    =======================================================

    图 1.5

     

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.xlabel('x-axis')
    plt.ylabel('y-axis')
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图  1.6

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.grid(linestyle=':', color='r')
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图  1.7

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.axhline(y=0.0, c='r', ls='--', lw=2)
    plt.axvline(x=4.0, c='r', ls='--', lw=2)
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图 1.8

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.axvspan(xmin=4.0, xmax=6.0, facecolor='y', alpha=0.3)
    plt.axhspan(ymin=0.0, ymax=0.5, facecolor='y', alpha=0.3)
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图 1.9

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.annotate('maximum', xy=(np.pi/2, 1.0), xytext=((np.pi/2)+1.0, 0.8),weight='bold', color='b', 
                arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='b'))
    
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图  1.10

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.text(3.1, 0.09, 'y=sin(x)', weight='bold', color='b')
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图  1.11

     

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.title("y=sin(x)")
    
    plt.legend()
    
    plt.show()
    View Code

    =======================================================

    图  1.12

     

    import matplotlib.pyplot as plt
    import numpy as np
    
    
    x=np.linspace(0.05, 10, 1000)
    y=np.sin(x)
    
    plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure')
    
    plt.legend(loc="lower right")
    
    plt.show()
    View Code
  • 相关阅读:
    学习进度——第五周
    构建之法阅读笔记02
    学习进度——第四周
    整型数组——首尾相连
    构建之法阅读笔记01
    二维数组
    学习进度——第三周
    新最大子数组——数量级和数量无限大
    最大子数组求和
    P3388 【模板】割点(割顶)题解 tarjan求割点
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/12887452.html
Copyright © 2020-2023  润新知