• dd


    Building Python using VC++ 7.1
    -------------------------------------
    This directory is used to build Python for Win32 platforms, e.g. Windows
    95, 98 and NT.  It requires Microsoft Visual C++ 7.1
    (a.k.a. Visual Studio .NET 2003).
    (For other Windows platforms and compilers, see ../PC/readme.txt.)
    
    All you need to do is open the workspace "pcbuild.sln" in MSVC++, select
    the Debug or Release setting (using "Solution Configuration" from
    the "Standard" toolbar"), and build the projects.
    
    The proper order to build subprojects:
    
    1) pythoncore (this builds the main Python DLL and library files,
                   python33.{dll, lib} in Release mode)
                  NOTE:  in previous releases, this subproject was
                  named after the release number, e.g. python20.
    
    2) python (this builds the main Python executable,
               python.exe in Release mode)
    
    3) the other subprojects, as desired or needed (note:  you probably don't
       want to build most of the other subprojects, unless you're building an
       entire Python distribution from scratch, or specifically making changes
       to the subsystems they implement, or are running a Python core buildbot
       test slave; see SUBPROJECTS below)
    
    When using the Debug setting, the output files have a _d added to
    their name:  python33_d.dll, python_d.exe, parser_d.pyd, and so on.
    
    SUBPROJECTS
    -----------
    These subprojects should build out of the box.  Subprojects other than the
    main ones (pythoncore, python, pythonw) generally build a DLL (renamed to
    .pyd) from a specific module so that users don't have to load the code
    supporting that module unless they import the module.
    
    pythoncore
        .dll and .lib
    python
        .exe
    pythonw
        pythonw.exe, a variant of python.exe that doesn't pop up a DOS box
    _socket
        socketmodule.c
    _testcapi
        tests of the Python C API, run via Lib/test/test_capi.py, and
        implemented by module Modules/_testcapimodule.c
    pyexpat
        Python wrapper for accelerated XML parsing, which incorporates stable
        code from the Expat project:  http://sourceforge.net/projects/expat/
    select
        selectmodule.c
    unicodedata
        large tables of Unicode data
    winsound
        play sounds (typically .wav files) under Windows
    
    The following subprojects will generally NOT build out of the box.  They
    wrap code Python doesn't control, and you'll need to download the base
    packages first and unpack them into siblings of PC's parent
    directory; for example, if this directory is ....\dist\trunk\PC\VS7.1,
    unpack into new subdirectories of dist\.
    
    _tkinter
        Python wrapper for the Tk windowing system.  Requires building
        Tcl/Tk first.  Following are instructions for Tcl/Tk 8.4.12.
    
        Get source
        ----------
        In the dist directory, run
        svn export http://svn.python.org/projects/external/tcl8.4.12
        svn export http://svn.python.org/projects/external/tk8.4.12
        svn export http://svn.python.org/projects/external/tix-8.4.0
    
        Build Tcl first (done here w/ MSVC 7.1 on Windows XP)
        ---------------
        Use "Start -> All Programs -> Microsoft Visual Studio .NET 2003
             -> Visual Studio .NET Tools -> Visual Studio .NET 2003 Command Prompt"
        to get a shell window with the correct environment settings
        cd dist\tcl8.4.12\win
        nmake -f makefile.vc
        nmake -f makefile.vc INSTALLDIR=..\..\tcltk install
    
        XXX Should we compile with OPTS=threads?
    
        Optional:  run tests, via
            nmake -f makefile.vc test
    
            On WinXP Pro, wholly up to date as of 30-Aug-2004:
            all.tcl:        Total   10678   Passed  9969    Skipped 709     Failed  0
            Sourced 129 Test Files.
    
        Build Tk
        --------
        cd dist\tk8.4.12\win
        nmake -f makefile.vc TCLDIR=..\..\tcl8.4.12
        nmake -f makefile.vc TCLDIR=..\..\tcl8.4.12 INSTALLDIR=..\..\tcltk install
    
        XXX Should we compile with OPTS=threads?
    
        XXX Our installer copies a lot of stuff out of the Tcl/Tk install
        XXX directory.  Is all of that really needed for Python use of Tcl/Tk?
    
        Optional:  run tests, via
            nmake -f makefile.vc TCLDIR=..\..\tcl8.4.12 test
    
            On WinXP Pro, wholly up to date as of 30-Aug-2004:
            all.tcl:        Total   8420    Passed  6826    Skipped 1581    Failed  13
            Sourced 91 Test Files.
            Files with failing tests: canvImg.test scrollbar.test textWind.test winWm.test
    
       Built Tix
       ---------
       cd dist\tix-8.4.0\win
       nmake -f python.mak
       nmake -f python.mak install
    
    bz2
        Python wrapper for the libbz2 compression library.  Homepage
            http://sources.redhat.com/bzip2/
        Download the source from the python.org copy into the dist
        directory:
    
        svn export http://svn.python.org/projects/external/bzip2-1.0.3
    
        A custom pre-link step in the bz2 project settings should manage to
        build bzip2-1.0.3\libbz2.lib by magic before bz2.pyd (or bz2_d.pyd) is
        linked in VS7.1\.
        However, the bz2 project is not smart enough to remove anything under
        bzip2-1.0.3\ when you do a clean, so if you want to rebuild bzip2.lib
        you need to clean up bzip2-1.0.3\ by hand.
    
        The build step shouldn't yield any warnings or errors, and should end
        by displaying 6 blocks each terminated with
            FC: no differences encountered
    
        All of this managed to build bzip2-1.0.3\libbz2.lib, which the Python
        project links in.
    
    _sqlite3
        Python wrapper for SQLite library.
        
        Get the source code through
        
        svn export http://svn.python.org/projects/external/sqlite-source-3.3.4
        
        To use the extension module in a Python build tree, copy sqlite3.dll into
        the VS7.1 folder.
    
    _ssl
        Python wrapper for the secure sockets library.
    
        Get the source code through
    
        svn export http://svn.python.org/projects/external/openssl-0.9.8a
    
        Alternatively, get the latest version from http://www.openssl.org.
        You can (theoretically) use any version of OpenSSL you like - the
        build process will automatically select the latest version.
    
        You must also install ActivePerl from
            http://www.activestate.com/Products/ActivePerl/
        as this is used by the OpenSSL build process.  Complain to them <wink>.
    
        The MSVC project simply invokes build_ssl.py to perform
        the build.  This Python script locates and builds your OpenSSL
        installation, then invokes a simple makefile to build the final .pyd.
    
        build_ssl.py attempts to catch the most common errors (such as not
        being able to find OpenSSL sources, or not being able to find a Perl
        that works with OpenSSL) and give a reasonable error message.
        If you have a problem that doesn't seem to be handled correctly
        (eg, you know you have ActivePerl but we can't find it), please take
        a peek at build_ssl.py and suggest patches.  Note that build_ssl.py
        should be able to be run directly from the command-line.
    
        build_ssl.py/MSVC isn't clever enough to clean OpenSSL - you must do
        this by hand.
    
    Building for Itanium
    --------------------
    
    The project files support a ReleaseItanium configuration which creates
    Win64/Itanium binaries. For this to work, you need to install the Platform
    SDK, in particular the 64-bit support. This includes an Itanium compiler
    (future releases of the SDK likely include an AMD64 compiler as well).
    In addition, you need the Visual Studio plugin for external C compilers,
    from http://sf.net/projects/vsextcomp. The plugin will wrap cl.exe, to
    locate the proper target compiler, and convert compiler options
    accordingly. The project files require atleast version 0.9.
    
    Building for AMD64
    ------------------
    
    The build process for the ReleaseAMD64 configuration is very similar
    to the Itanium configuration; make sure you use the latest version of
    vsextcomp.
    
    Building Python Using the free MS Toolkit Compiler
    --------------------------------------------------
    
    The build process for Visual C++ can be used almost unchanged with the free MS
    Toolkit Compiler. This provides a way of building Python using freely
    available software.
    
    Note that Microsoft have withdrawn the free MS Toolkit Compiler, so this can
    no longer be considered a supported option. The instructions are still
    correct, but you need to already have a copy of the compiler in order to use
    them. Microsoft now supply Visual C++ 2008 Express Edition for free, but this
    is NOT compatible with Visual C++ 7.1 (it uses a different C runtime), and so
    cannot be used to build a version of Python compatible with the standard
    python.org build. If you are interested in using Visual C++ 2008 Express
    Edition, however, you should look at the PCBuild directory.
    
    Requirements
    
        To build Python, the following tools are required:
    
        * The Visual C++ Toolkit Compiler
            no longer available for download - see above
        * A recent Platform SDK
            from http://www.microsoft.com/downloads/details.aspx?FamilyID=484269e2-3b89-47e3-8eb7-1f2be6d7123a
        * The .NET 1.1 SDK
            from http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d
    
        [Does anyone have better URLs for the last 2 of these?]
    
        The toolkit compiler is needed as it is an optimising compiler (the
        compiler supplied with the .NET SDK is a non-optimising version). The
        platform SDK is needed to provide the Windows header files and libraries
        (the Windows 2003 Server SP1 edition, typical install, is known to work -
        other configurations or versions are probably fine as well). The .NET 1.1
        SDK is needed because it contains a version of msvcrt.dll which links to
        the msvcr71.dll CRT. Note that the .NET 2.0 SDK is NOT acceptable, as it
        references msvcr80.dll.
    
        All of the above items should be installed as normal.
    
        If you intend to build the openssl (needed for the _ssl extension) you
        will need the C runtime sources installed as part of the platform SDK.
    
        In addition, you will need Nant, available from
        http://nant.sourceforge.net. The 0.85 release candidate 3 version is known
        to work. This is the latest released version at the time of writing. Later
        "nightly build" versions are known NOT to work - it is not clear at
        present whether future released versions will work.
    
    Setting up the environment
    
        Start a platform SDK "build environment window" from the start menu. The
        "Windows XP 32-bit retail" version is known to work.
    
        Add the following directories to your PATH:
            * The toolkit compiler directory
            * The SDK "Win64" binaries directory
    	* The Nant directory
        Add to your INCLUDE environment variable:
            * The toolkit compiler INCLUDE directory
        Add to your LIB environment variable:
            * The toolkit compiler LIB directory
    	* The .NET SDK Visual Studio 2003 VC7\lib directory
    
        The following commands should set things up as you need them:
    
            rem Set these values according to where you installed the software
            set TOOLKIT=C:\Program Files\Microsoft Visual C++ Toolkit 2003
            set SDK=C:\Program Files\Microsoft Platform SDK
            set NET=C:\Program Files\Microsoft Visual Studio .NET 2003
            set NANT=C:\Utils\Nant
    
            set PATH=%TOOLKIT%\bin;%PATH%;%SDK%\Bin\win64;%NANT%\bin
            set INCLUDE=%TOOLKIT%\include;%INCLUDE%
            set LIB=%TOOLKIT%\lib;%NET%\VC7\lib;%LIB%
    
        The "win64" directory from the SDK is added to supply executables such as
        "cvtres" and "lib", which are not available elsewhere. The versions in the
        "win64" directory are 32-bit programs, so they are fine to use here.
    
        That's it. To build Python (the core only, no binary extensions which
        depend on external libraries) you just need to issue the command
    
            nant -buildfile:python.build all
    
        from within the VS7.1 directory.
    
    Extension modules
    
        To build those extension modules which require external libraries
        (_tkinter, bz2, _sqlite3, _ssl) you can follow the instructions
        for the Visual Studio build above, with a few minor modifications. These
        instructions have only been tested using the sources in the Python
        subversion repository - building from original sources should work, but
        has not been tested.
    
        For each extension module you wish to build, you should remove the
        associated include line from the excludeprojects section of pc.build.
    
        The changes required are:
    
        _tkinter
            The tix makefile (tix-8.4.0\win\makefile.vc) must be modified to
    	remove references to TOOLS32. The relevant lines should be changed to
    	read:
                cc32 = cl.exe
                link32 = link.exe
                include32 = 
    	The remainder of the build instructions will work as given.
    
        bz2
            No changes are needed
    
        _sqlite3
            No changes are needed. However, in order for the tests to succeed, a
    	copy of sqlite3.dll must be downloaded, and placed alongside
    	python.exe.
    
        _ssl
            The documented build process works as written. However, it needs a
    	copy of the file setargv.obj, which is not supplied in the platform
    	SDK. However, the sources are available (in the crt source code). To
    	build setargv.obj, proceed as follows:
    
            Copy setargv.c, cruntime.h and internal.h from %SDK%\src\crt to a
    	temporary directory.
    	Compile using "cl /c /I. /MD /D_CRTBLD setargv.c"
    	Copy the resulting setargv.obj to somewhere on your LIB environment
    	(%SDK%\lib is a reasonable place).
    
    	With setargv.obj in place, the standard build process should work
    	fine.
    
    YOUR OWN EXTENSION DLLs
    -----------------------
    If you want to create your own extension module DLL, there's an example
    with easy-to-follow instructions in ../PC/example/; read the file
    readme.txt there first.
  • 相关阅读:
    LruCache
    java 泛型的类型擦除和桥方法
    java Object解析
    android周期性任务
    阿里Sophix热修复
    android 广播
    《Android开发艺术探索》第11章 Android的线程和线程池
    RxJava2 源码分析
    android DDMS中的内存监测工具Heap
    Java的Unsafe类
  • 原文地址:https://www.cnblogs.com/dengyigod/p/2613738.html
Copyright © 2020-2023  润新知