题面
思路
首先,这道题目有一个非常显然(但是我不会严格证明,只能意会一下)的结论:一个合法的操作序列中,任意两个操作是可以互换的
那么,这个结论加上本题极小的数据范围,为什么不搜索一下呢?
ok说干就干
既然顺序不重要,我们就从交换两个长度为1的序列开始搜索
这时,就有另外一个性质:因为我们每种交换能且只能做一次,所以有的情况下我们是一定无法完成的
考虑交换两个长度为$2k$的序列,这时我们把整个序列分成长度为$2{k+1}$的段
如果这些段全部都是连续且递增(也就是3,4,5,6这样)的,说明这个操作不用做
如果这些段里面有一个不是连续递增的,就把这个段的前后两半交换
如果这些段里面有两个不是连续递增的,那么我们对于这两段的两半,讨论四种交换的情况,分别判断它们是否合法
如果这些段里面有超过两个不是连续递增的,那么可以证明此时我们一定无法完成排序,可以把这个搜索枝剪掉
这样操作以后,我们会发现,对于所有合法的长度为$2k$的序列的交换,完成之后的序列,一定由若干个长度为$2{k+1}$的连续递增序列构成
这时我们再递归到下一层处理,递归n层以后要判断一下最终序列是否是1-n,然后用当前这个操作序列中的操作个数的阶乘加到答案上(因为可以随意改变操作顺序)
总时间复杂度为$O(2^{24})$,但是远远达不到这个值
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#include<vector>
using namespace std;
inline ll read(){
ll re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
ll n,a[5010],tmp[5010][15];
vector<int>ans;//不同的操作序列的操作个数
void dfs(ll k,ll num){
ll i,j,t,cnt=0,m1,m2;//cnt是非连续递增的段的个数,m1m2是前两个的起点
if(k==n+1){
for(i=1;i<=(1<<n);i++) if(tmp[i][k]!=i) return;
ans.push_back(num);return;//注意到
}
for(i=1;i<=(1<<n);i+=(1<<k)){//统计cnt
t=tmp[i][k];
for(j=i+1;j<i+(1<<k);j++){
if(tmp[j][k]!=t+j-i){
if(cnt==2) return;
cnt++;
if(cnt==1) m1=i;
else m2=i;
break;
}
}
}
if(cnt>2) return;
for(i=1;i<=(1<<n);i++) tmp[i][k+1]=tmp[i][k];
if(cnt==0){
dfs(k+1,num);return;
}
if(cnt==1){
for(j=m1;j<m1+(1<<k-1);j++) swap(tmp[j][k+1],tmp[j+(1<<k-1)][k+1]);
dfs(k+1,num+1);return;
}
bool flag=1;//这里开始枚举四种情况
for(i=1;i<=(1<<k-1);i++) swap(tmp[m1+i-1][k+1],tmp[m2+i-1][k+1]);
for(i=1;i<=(1<<k);i++) if(tmp[m1+i-1][k+1]-tmp[m1][k+1]!=i-1) flag=0;
for(i=1;i<=(1<<k);i++) if(tmp[m2+i-1][k+1]-tmp[m2][k+1]!=i-1) flag=0;
if(flag) dfs(k+1,num+1);
flag=1;
for(i=1;i<=(1<<n);i++) tmp[i][k+1]=tmp[i][k];
for(i=1;i<=(1<<k-1);i++) swap(tmp[m1+(1<<k-1)+i-1][k+1],tmp[m2+i-1][k+1]);
for(i=1;i<=(1<<k);i++) if(tmp[m1+i-1][k+1]-tmp[m1][k+1]!=i-1) flag=0;
for(i=1;i<=(1<<k);i++) if(tmp[m2+i-1][k+1]-tmp[m2][k+1]!=i-1) flag=0;
if(flag) dfs(k+1,num+1);
flag=1;
for(i=1;i<=(1<<n);i++) tmp[i][k+1]=tmp[i][k];
for(i=1;i<=(1<<k-1);i++) swap(tmp[m1+i-1][k+1],tmp[m2+(1<<k-1)+i-1][k+1]);
for(i=1;i<=(1<<k);i++) if(tmp[m1+i-1][k+1]-tmp[m1][k+1]!=i-1) flag=0;
for(i=1;i<=(1<<k);i++) if(tmp[m2+i-1][k+1]-tmp[m2][k+1]!=i-1) flag=0;
if(flag) dfs(k+1,num+1);
flag=1;
for(i=1;i<=(1<<n);i++) tmp[i][k+1]=tmp[i][k];
for(i=1;i<=(1<<k-1);i++) swap(tmp[m1+(1<<k-1)+i-1][k+1],tmp[m2+(1<<k-1)+i-1][k+1]);
for(i=1;i<=(1<<k);i++) if(tmp[m1+i-1][k+1]-tmp[m1][k+1]!=i-1) flag=0;
for(i=1;i<=(1<<k);i++) if(tmp[m2+i-1][k+1]-tmp[m2][k+1]!=i-1) flag=0;
if(flag) dfs(k+1,num+1);
}
int main(){
n=read();ll i,tans=1,out=0,j;
for(i=1;i<=(1<<n);i++) a[i]=read(),tmp[i][1]=a[i];
dfs(1,0);
for(i=0;i<ans.size();i++){//阶乘更新答案
tans=1;
for(j=1;j<=ans[i];j++) tans*=j;
out+=tans;
}
cout<<out;
}