• 最邻近规则分类KNN算法


    例子:

    • 求未知电影属于什么类型:

    算法介绍:

    步骤:

    •    为了判断未知实例的类别,以所有已知类别的实例作为参照
    •      选择参数K
    •      计算未知实例与所有已知实例的距离
    •      选择最近K个已知实例
    •      根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

     细节:

    • 关于K的选择
    • 关于距离的衡量方法:

    其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)
     
     
    算法优点:
    •   简单。
    •       易于理解。
    •       容易实现。
    •       通过对K的选择可具备丢噪音数据的健壮性。

    算法缺点:

    •   需要大量空间储存所有已知实例。
    •       算法复杂度高(需要比较所有已知实例与要分类的实例)。
    •       当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本。


    KNN代码(Python实现):

     1 import csv
     2 import random
     3 import math
     4 import operator
     5 
     6 
     7 def loadDataset(filename, split, trainingSet=[], testSet=[]):
     8     with open(filename, 'r') as csvfile:
     9         lines = csv.reader(csvfile)
    10         dataset = list(lines) #得到文件中的数据
    11         for x in range(len(dataset) - 1):
    12             for y in range(4):
    13                 dataset[x][y] = float(dataset[x][y])
    14             if random.random() < split:   #以split为界限把数据集分为两部分
    15                 trainingSet.append(dataset[x])
    16             else:
    17                 testSet.append(dataset[x])
    18 
    19 
    20 def euclideanDistance(instance1, instance2, length):  #计算距离(传入两个实例和维度)
    21     distance = 0
    22     for x in range(length):
    23         distance += pow((instance1[x] - instance2[x]), 2)   #计算所有维度的平方和
    24     return math.sqrt(distance)
    25 
    26 
    27 def getNeighbors(trainingSet, testInstance, k):   #返回最近的几个邻域
    28     distances = [] #所有计算得出的距离的容器
    29     length = len(testInstance) - 1  #测试实例的维度
    30     for x in range(len(trainingSet)):
    31         dist = euclideanDistance(testInstance, trainingSet[x], length)
    32         distances.append((trainingSet[x], dist))
    33     distances.sort(key=operator.itemgetter(1)) #key=operator.itemgetter(1)根据第一个值域进行排序
    34     #print(distances)
    35     neighbors = []
    36     for x in range(k):
    37         neighbors.append(distances[x][0])
    38     return neighbors
    39 
    40 
    41 def getResponse(neighbors):
    42     classVotes = {}
    43     for x in range(len(neighbors)):
    44         response = neighbors[x][-1]
    45         if response in classVotes:
    46             classVotes[response] += 1
    47         else:
    48             classVotes[response] = 1
    49     sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
    50     return sortedVotes[0][0]
    51 
    52 
    53 def getAccuracy(testSet, predictions):  #计算正确度
    54     correct = 0
    55     for x in range(len(testSet)):
    56         if testSet[x][-1] == predictions[x]:
    57             correct += 1
    58     return (correct / float(len(testSet))) * 100.0
    59 
    60 
    61 def main():
    62     # prepare data
    63     trainingSet = []
    64     testSet = []
    65     split = 0.67 #以split为界限把数据集分为两部分
    66     loadDataset(r'iris.data.txt', split, trainingSet, testSet)
    67     print('Train set: ' + repr(len(trainingSet)))
    68     print('Test set: ' + repr(len(testSet)))
    69     # generate predictions
    70     predictions = []
    71     k = 3
    72     for x in range(len(testSet)):
    73         neighbors = getNeighbors(trainingSet, testSet[x], k)
    74         result = getResponse(neighbors)
    75         predictions.append(result)
    76         print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
    77     accuracy = getAccuracy(testSet, predictions)
    78     print('Accuracy: ' + repr(accuracy) + '%')
    79 
    80 if __name__ == '__main__':
    81     main()

     虹膜数据:

    5.1,3.5,1.4,0.2,Iris-setosa
    4.9,3.0,1.4,0.2,Iris-setosa
    4.7,3.2,1.3,0.2,Iris-setosa
    4.6,3.1,1.5,0.2,Iris-setosa
    5.0,3.6,1.4,0.2,Iris-setosa
    5.4,3.9,1.7,0.4,Iris-setosa
    4.6,3.4,1.4,0.3,Iris-setosa
    5.0,3.4,1.5,0.2,Iris-setosa
    4.4,2.9,1.4,0.2,Iris-setosa
    4.9,3.1,1.5,0.1,Iris-setosa
    5.4,3.7,1.5,0.2,Iris-setosa
    4.8,3.4,1.6,0.2,Iris-setosa
    4.8,3.0,1.4,0.1,Iris-setosa
    4.3,3.0,1.1,0.1,Iris-setosa
    5.8,4.0,1.2,0.2,Iris-setosa
    5.7,4.4,1.5,0.4,Iris-setosa
    5.4,3.9,1.3,0.4,Iris-setosa
    5.1,3.5,1.4,0.3,Iris-setosa
    5.7,3.8,1.7,0.3,Iris-setosa
    5.1,3.8,1.5,0.3,Iris-setosa
    5.4,3.4,1.7,0.2,Iris-setosa
    5.1,3.7,1.5,0.4,Iris-setosa
    4.6,3.6,1.0,0.2,Iris-setosa
    5.1,3.3,1.7,0.5,Iris-setosa
    4.8,3.4,1.9,0.2,Iris-setosa
    5.0,3.0,1.6,0.2,Iris-setosa
    5.0,3.4,1.6,0.4,Iris-setosa
    5.2,3.5,1.5,0.2,Iris-setosa
    5.2,3.4,1.4,0.2,Iris-setosa
    4.7,3.2,1.6,0.2,Iris-setosa
    4.8,3.1,1.6,0.2,Iris-setosa
    5.4,3.4,1.5,0.4,Iris-setosa
    5.2,4.1,1.5,0.1,Iris-setosa
    5.5,4.2,1.4,0.2,Iris-setosa
    4.9,3.1,1.5,0.2,Iris-setosa
    5.0,3.2,1.2,0.2,Iris-setosa
    5.5,3.5,1.3,0.2,Iris-setosa
    4.9,3.6,1.4,0.1,Iris-setosa
    4.4,3.0,1.3,0.2,Iris-setosa
    5.1,3.4,1.5,0.2,Iris-setosa
    5.0,3.5,1.3,0.3,Iris-setosa
    4.5,2.3,1.3,0.3,Iris-setosa
    4.4,3.2,1.3,0.2,Iris-setosa
    5.0,3.5,1.6,0.6,Iris-setosa
    5.1,3.8,1.9,0.4,Iris-setosa
    4.8,3.0,1.4,0.3,Iris-setosa
    5.1,3.8,1.6,0.2,Iris-setosa
    4.6,3.2,1.4,0.2,Iris-setosa
    5.3,3.7,1.5,0.2,Iris-setosa
    5.0,3.3,1.4,0.2,Iris-setosa
    7.0,3.2,4.7,1.4,Iris-versicolor
    6.4,3.2,4.5,1.5,Iris-versicolor
    6.9,3.1,4.9,1.5,Iris-versicolor
    5.5,2.3,4.0,1.3,Iris-versicolor
    6.5,2.8,4.6,1.5,Iris-versicolor
    5.7,2.8,4.5,1.3,Iris-versicolor
    6.3,3.3,4.7,1.6,Iris-versicolor
    4.9,2.4,3.3,1.0,Iris-versicolor
    6.6,2.9,4.6,1.3,Iris-versicolor
    5.2,2.7,3.9,1.4,Iris-versicolor
    5.0,2.0,3.5,1.0,Iris-versicolor
    5.9,3.0,4.2,1.5,Iris-versicolor
    6.0,2.2,4.0,1.0,Iris-versicolor
    6.1,2.9,4.7,1.4,Iris-versicolor
    5.6,2.9,3.6,1.3,Iris-versicolor
    6.7,3.1,4.4,1.4,Iris-versicolor
    5.6,3.0,4.5,1.5,Iris-versicolor
    5.8,2.7,4.1,1.0,Iris-versicolor
    6.2,2.2,4.5,1.5,Iris-versicolor
    5.6,2.5,3.9,1.1,Iris-versicolor
    5.9,3.2,4.8,1.8,Iris-versicolor
    6.1,2.8,4.0,1.3,Iris-versicolor
    6.3,2.5,4.9,1.5,Iris-versicolor
    6.1,2.8,4.7,1.2,Iris-versicolor
    6.4,2.9,4.3,1.3,Iris-versicolor
    6.6,3.0,4.4,1.4,Iris-versicolor
    6.8,2.8,4.8,1.4,Iris-versicolor
    6.7,3.0,5.0,1.7,Iris-versicolor
    6.0,2.9,4.5,1.5,Iris-versicolor
    5.7,2.6,3.5,1.0,Iris-versicolor
    5.5,2.4,3.8,1.1,Iris-versicolor
    5.5,2.4,3.7,1.0,Iris-versicolor
    5.8,2.7,3.9,1.2,Iris-versicolor
    6.0,2.7,5.1,1.6,Iris-versicolor
    5.4,3.0,4.5,1.5,Iris-versicolor
    6.0,3.4,4.5,1.6,Iris-versicolor
    6.7,3.1,4.7,1.5,Iris-versicolor
    6.3,2.3,4.4,1.3,Iris-versicolor
    5.6,3.0,4.1,1.3,Iris-versicolor
    5.5,2.5,4.0,1.3,Iris-versicolor
    5.5,2.6,4.4,1.2,Iris-versicolor
    6.1,3.0,4.6,1.4,Iris-versicolor
    5.8,2.6,4.0,1.2,Iris-versicolor
    5.0,2.3,3.3,1.0,Iris-versicolor
    5.6,2.7,4.2,1.3,Iris-versicolor
    5.7,3.0,4.2,1.2,Iris-versicolor
    5.7,2.9,4.2,1.3,Iris-versicolor
    6.2,2.9,4.3,1.3,Iris-versicolor
    5.1,2.5,3.0,1.1,Iris-versicolor
    5.7,2.8,4.1,1.3,Iris-versicolor
    6.3,3.3,6.0,2.5,Iris-virginica
    5.8,2.7,5.1,1.9,Iris-virginica
    7.1,3.0,5.9,2.1,Iris-virginica
    6.3,2.9,5.6,1.8,Iris-virginica
    6.5,3.0,5.8,2.2,Iris-virginica
    7.6,3.0,6.6,2.1,Iris-virginica
    4.9,2.5,4.5,1.7,Iris-virginica
    7.3,2.9,6.3,1.8,Iris-virginica
    6.7,2.5,5.8,1.8,Iris-virginica
    7.2,3.6,6.1,2.5,Iris-virginica
    6.5,3.2,5.1,2.0,Iris-virginica
    6.4,2.7,5.3,1.9,Iris-virginica
    6.8,3.0,5.5,2.1,Iris-virginica
    5.7,2.5,5.0,2.0,Iris-virginica
    5.8,2.8,5.1,2.4,Iris-virginica
    6.4,3.2,5.3,2.3,Iris-virginica
    6.5,3.0,5.5,1.8,Iris-virginica
    7.7,3.8,6.7,2.2,Iris-virginica
    7.7,2.6,6.9,2.3,Iris-virginica
    6.0,2.2,5.0,1.5,Iris-virginica
    6.9,3.2,5.7,2.3,Iris-virginica
    5.6,2.8,4.9,2.0,Iris-virginica
    7.7,2.8,6.7,2.0,Iris-virginica
    6.3,2.7,4.9,1.8,Iris-virginica
    6.7,3.3,5.7,2.1,Iris-virginica
    7.2,3.2,6.0,1.8,Iris-virginica
    6.2,2.8,4.8,1.8,Iris-virginica
    6.1,3.0,4.9,1.8,Iris-virginica
    6.4,2.8,5.6,2.1,Iris-virginica
    7.2,3.0,5.8,1.6,Iris-virginica
    7.4,2.8,6.1,1.9,Iris-virginica
    7.9,3.8,6.4,2.0,Iris-virginica
    6.4,2.8,5.6,2.2,Iris-virginica
    6.3,2.8,5.1,1.5,Iris-virginica
    6.1,2.6,5.6,1.4,Iris-virginica
    7.7,3.0,6.1,2.3,Iris-virginica
    6.3,3.4,5.6,2.4,Iris-virginica
    6.4,3.1,5.5,1.8,Iris-virginica
    6.0,3.0,4.8,1.8,Iris-virginica
    6.9,3.1,5.4,2.1,Iris-virginica
    6.7,3.1,5.6,2.4,Iris-virginica
    6.9,3.1,5.1,2.3,Iris-virginica
    5.8,2.7,5.1,1.9,Iris-virginica
    6.8,3.2,5.9,2.3,Iris-virginica
    6.7,3.3,5.7,2.5,Iris-virginica
    6.7,3.0,5.2,2.3,Iris-virginica
    6.3,2.5,5.0,1.9,Iris-virginica
    6.5,3.0,5.2,2.0,Iris-virginica
    6.2,3.4,5.4,2.3,Iris-virginica
    5.9,3.0,5.1,1.8,Iris-virginica
  • 相关阅读:
    多线程(一)初步使用
    数据迁移:MSSQL脚本文件过大,客户端没有足够的内存继续执行程序
    统计数据,数据库就只有8,9,10的,而前端需要返回连续的记录
    Windows10禁用update
    C#模拟HTTP POST 请求
    C#中Equals和= =(等于号)的比较(转)
    .net framework4与其client profile版本的区别
    centos7 安装mysql
    JAVA中使用ASN.1
    使用gradle建立java application
  • 原文地址:https://www.cnblogs.com/dear_diary/p/7239997.html
Copyright © 2020-2023  润新知