• E. Count The Blocks


    You wrote down all integers from 00 to 10n110n−1, padding them with leading zeroes so their lengths are exactly nn. For example, if n=3n=3 then you wrote out 000, 001, ..., 998, 999.

    A block in an integer xx is a consecutive segment of equal digits that cannot be extended to the left or to the right.

    For example, in the integer 0002773400000027734000 there are three blocks of length 11, one block of length 22 and two blocks of length 33.

    For all integers ii from 11 to nn count the number of blocks of length ii among the written down integers.

    Since these integers may be too large, print them modulo 998244353998244353.

    Input

    The only line contains one integer nn (1n21051≤n≤2⋅105).

    Output

    In the only line print nn integers. The ii-th integer is equal to the number of blocks of length ii.

    Since these integers may be too large, print them modulo 998244353998244353.

    Examples
    input
    Copy
    1
    
    output
    Copy
    10
    
    input
    Copy
    2
    
    output
    Copy
    180 10
    
    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    //#include <unordered_set>
    //#include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(ll  i=a;i<=b;i++)
    #define dec(i,a,b)      for(ll  i=a;i>=b;i--)
    #define forn(i, n)      for(ll i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 998244353;
    const int N = 2e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    inline int qpow(int x, ll n) {
        int r = 1;
        while (n > 0) {
            if (n & 1) r = 1ll * r * x % mod;
            n >>= 1; x = 1ll * x * x % mod;
        }
        return r;
    }
    inline int add(int x, int y) {
        return ((x%mod)+(y%mod))%mod;
    }
    inline int sub(int x, int y) {
        x -= y;
        return x < 0 ? x += mod : x;
    }
    inline int mul(int x, int y) {
        return (1ll * (x %mod) * (y % mod))%mod;
    }
    
    inline int Inv(int x) {
        return qpow(x, mod - 2);
    }
    
    int main()
    {
        ll n;
        cin >> n;
        vector<ll> f(n + 1,1);
        rep(i, 1, n)
            f[i] = f[i - 1] * 10 % mod;
        rep(i, 1, n)
        {
            if (i == n)
                cout << 10 << endl;
            else
            {
                ll t1 = n - i - 1, t2 = 2;
                t1 = mul(f[n - i - 1], t1) * 81ll % mod;
                t2 = mul(f[n - i], 18);
                cout << add(t1, t2) << " ";
            }
        }
        return 0;
    }
  • 相关阅读:
    asp.net中合并DataGrid行
    将Asp.Net页面输出到EXCEL里去····
    清空Sql数据库日志等操作
    opengl 教程(14) 摄像机控制(1)
    awk使用技巧
    opengl 教程(10) index draw
    opengl 教程(12) 投影矩阵
    opengl 教程(9) 顶点属性插值
    opengl 教程(15) 摄像机控制(2)
    opengl 教程(11) 平移/旋转/缩放
  • 原文地址:https://www.cnblogs.com/dealer/p/13234633.html
Copyright © 2020-2023  润新知