• D. Grid-00100


    ------------恢复内容开始------------

    D. Grid-00100
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    A mad scientist Dr.Jubal has made a competitive programming task. Try to solve it!

    You are given integers n,kn,k. Construct a grid AA with size n×nn×n consisting of integers 00 and 11. The very important condition should be satisfied: the sum of all elements in the grid is exactly kk. In other words, the number of 11 in the grid is equal to kk.

    Let's define:

    • Ai,jAi,j as the integer in the ii-th row and the jj-th column.
    • Ri=Ai,1+Ai,2+...+Ai,nRi=Ai,1+Ai,2+...+Ai,n (for all 1in1≤i≤n).
    • Cj=A1,j+A2,j+...+An,jCj=A1,j+A2,j+...+An,j (for all 1jn1≤j≤n).
    • In other words, RiRi are row sums and CjCj are column sums of the grid AA.
    • For the grid AA let's define the value f(A)=(max(R)min(R))2+(max(C)min(C))2f(A)=(max(R)−min(R))2+(max(C)−min(C))2 (here for an integer sequence XX we define max(X)max(X) as the maximum value in XX and min(X)min(X) as the minimum value in XX).

    Find any grid AA, which satisfies the following condition. Among such grids find any, for which the value f(A)f(A) is the minimum possible. Among such tables, you can find any.

    Input

    The input consists of multiple test cases. The first line contains a single integer tt (1t1001≤t≤100) — the number of test cases. Next tt lines contain descriptions of test cases.

    For each test case the only line contains two integers nn, k(1n300,0kn2)(1≤n≤300,0≤k≤n2).

    It is guaranteed that the sum of n2n2 for all test cases does not exceed 105105.

    Output

    For each test case, firstly print the minimum possible value of f(A)f(A) among all tables, for which the condition is satisfied.

    After that, print nn lines contain nn characters each. The jj-th character in the ii-th line should be equal to Ai,jAi,j.

    If there are multiple answers you can print any.

    Example
    input
    Copy
    4
    2 2
    3 8
    1 0
    4 16
    
    output
    Copy
    0
    10
    01
    2
    111
    111
    101
    0
    0
    0
    1111
    1111
    1111
    1111
    
    Note

    In the first test case, the sum of all elements in the grid is equal to 22, so the condition is satisfied. R1=1,R2=1R1=1,R2=1 and C1=1,C2=1C1=1,C2=1. Then, f(A)=(11)2+(11)2=0f(A)=(1−1)2+(1−1)2=0, which is the minimum possible value of f(A)f(A).

    In the second test case, the sum of all elements in the grid is equal to 88, so the condition is satisfied. R1=3,R2=3,R3=2R1=3,R2=3,R3=2 and C1=3,C2=2,C3=3C1=3,C2=2,C3=3. Then, f(A)=(32)2+(32)2=2f(A)=(3−2)2+(3−2)2=2. It can be proven, that it is the minimum possible value of f(A)f(A).

    ------------恢复内容结束------------

    #include <iostream>
    #include <vector>
    #include <algorithm>
    #include <string>
    #include <set>
    #include <queue>
    #include <map>
    #include <sstream>
    #include <cstdio>
    #include <cstring>
    #include <numeric>
    #include <cmath>
    #include <iomanip>
    #include <deque>
    #include <bitset>
    //#include <unordered_set>
    //#include <unordered_map>
    #define ll              long long
    #define pii             pair<int, int>
    #define rep(i,a,b)      for(int  i=a;i<=b;i++)
    #define dec(i,a,b)      for(int  i=a;i>=b;i--)
    #define forn(i, n)      for(int i = 0; i < int(n); i++)
    using namespace std;
    int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } };
    const long long INF = 0x7f7f7f7f7f7f7f7f;
    const int inf = 0x3f3f3f3f;
    const double pi = 3.14159265358979323846;
    const double eps = 1e-6;
    const int mod = 1e9 + 7;
    const int N = 1e5 + 5;
    //if(x<0 || x>=r || y<0 || y>=c)
    
    inline ll read()
    {
        ll x = 0; bool f = true; char c = getchar();
        while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); }
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return f ? x : -x;
    }
    ll gcd(ll m, ll n)
    {
        return n == 0 ? m : gcd(n, m % n);
    }
    ll lcm(ll m, ll n)
    {
        return m * n / gcd(m, n);
    }
    bool prime(int x) {
        if (x < 2) return false;
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) return false;
        }
        return true;
    }
    ll qpow(ll m, ll k, ll mod)
    {
        ll res = 1, t = m;
        while (k)
        {
            if (k & 1)
                res = res * t % mod;
            t = t * t % mod;
            k >>= 1;
        }
        return res;
    }
    
    int main()
    {
        int T;
        cin >> T;
        while (T--)
        {
            int n, k, t, i, j, p, q;
            char res[305][305];
            cin >> n >> k;
            if (k % n == 0) { printf("0
    "); }
            else { printf("2
    "); }
            for (i = 0; i < n; i++) {
                for (j = 0; j < n; j++) {
                    res[i][j] = '0';
                }
                res[i][n] = 0;
            }
            p = 0; q = 0;
            while (k > 0) {
                k--;
                res[p][q] = '1';
                p++; q++; q %= n;
                if (p == n) {
                    p = 0; q++; q %= n;
                }
            }
            for (i = 0; i < n; i++) {
                printf("%s
    ", res[i]);
            }
        }
        return 0;
    }
  • 相关阅读:
    The server must be started under an unprivileged user ID to prevent
    it starts (“forks”) a new process for each connection.
    kong
    flume采集微信小程序数据
    bc
    LINUX上一个命令计算PI
    parameters arguments 形式参数 实际参数
    极限编程 简单设计
    Communicating sequential processes CSP 通信顺序进程 CSP writing to a file by name (process, Erlang) vs. writing to a file descriptor (channel, Go)
    hcitool
  • 原文地址:https://www.cnblogs.com/dealer/p/13227314.html
Copyright © 2020-2023  润新知