• HDU 6649 Data Structure Problem(凸包+平衡树)


    首先可以证明,点积最值的点对都是都是在凸包上,套用题解的证明:假设里两个点都不在凸包上, 考虑把一个点换成凸包上的点(不动的那个点), 不管你是要点积最大还是最小, 你都可以把那个不动的点跟原点拉一条直线, 然后把所有的点投影到这条直线上, 要找的无非就是这条直线最前面或者最后面的两个点.这两个点不可能是不在凸包上的点.同理我们可以把另一个点移到凸包上.

    由于数据随机生成,那么生成凸包上的点的个数的期望是logn,而且删的点落在凸包上的概率是logn/n,所以只需要对每次删点和加点暴力重构凸包即可。但是删点过程要求剩下的第k个还在的点,那么这就需要用平衡树去维护第k个点的值,直接用stl内部的红黑树。

      1 //        ——By DD_BOND
      2 
      3 #include<ext/pb_ds/assoc_container.hpp>
      4 //#include<bits/stdc++.h>
      5 //#include<unordered_map>
      6 //#include<unordered_set>
      7 #include<functional>
      8 #include<algorithm>
      9 #include<iostream>
     10 //#include<ext/rope>
     11 #include<iomanip>
     12 #include<climits>
     13 #include<cstring>
     14 #include<cstdlib>
     15 #include<cstddef>
     16 #include<cstdio>
     17 #include<memory>
     18 #include<vector>
     19 #include<cctype>
     20 #include<string>
     21 #include<cmath>
     22 #include<queue>
     23 #include<deque>
     24 #include<ctime>
     25 #include<stack>
     26 #include<map>
     27 #include<set>
     28 
     29 #define fi first
     30 #define se second
     31 #define MP make_pair
     32 #define pb push_back
     33 
     34 #pragma GCC optimize(3)
     35 #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
     36 
     37 using namespace std;
     38 using namespace __gnu_pbds;
     39 using Tree=tree<int,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update>;
     40 
     41 typedef long long ll;
     42 typedef pair<int,int> P;
     43 typedef pair<ll,ll> Pll;
     44 typedef unsigned long long ull;
     45 
     46 const int lim=1e9;
     47 const ll LLMAX=2e18;
     48 const int MAXN=2e5+10;
     49 const double eps=1e-8;
     50 const double pi=acos(-1.0);
     51 const unsigned mul=20190812;
     52 const ll INF=0x3f3f3f3f3f3f3f3f;
     53 
     54 inline int dcmp(double x){
     55     if(fabs(x)<eps)    return 0;
     56     return (x>0? 1: -1);
     57 }
     58 
     59 inline double sqr(double x){ return x*x; }
     60 
     61 Tree t;
     62 
     63 struct Point{
     64     ll x,y; int id;
     65     Point(){ x=0,y=0; }
     66     Point(ll _x,ll _y):x(_x),y(_y){}
     67     bool operator ==(const Point &b)const{
     68         return x==b.x&&y==b.y;
     69     }
     70     bool operator <(const Point &b)const{
     71         return (x-b.x)==0? (y-b.y)<0 : x<b.x;
     72     }
     73     Point operator -(const Point &b)const{
     74         return Point(x-b.x,y-b.y);
     75     }
     76 };
     77 
     78 inline ll cross(Point a,Point b){    //叉积
     79     return a.x*b.y-a.y*b.x;
     80 }
     81 
     82 inline ll dot(Point a,Point b){    //点积
     83     return a.x*b.x+a.y*b.y;
     84 }
     85 
     86 Point tmp[MAXN];
     87 int convex_hull(Point *p,int n,Point *ch){    //求凸包
     88     int m=0;
     89     sort(p,p+n);
     90     for(int i=0;i<n;i++){
     91         while(m>1&&cross(tmp[m-1]-tmp[m-2],p[i]-tmp[m-1])<=0)    m--;
     92         tmp[m++]=p[i];
     93     }
     94     int k=m;
     95     for(int i=n-2;i>=0;i--){
     96         while(m>k&&cross(tmp[m-1]-tmp[m-2],p[i]-tmp[m-1])<=0)    m--;
     97         tmp[m++]=p[i];
     98     }
     99     if(n>1)    m--;
    100     for(int i=0;i<m;i++)    ch[i]=tmp[i];
    101     return m;
    102 }
    103 
    104 class Magic{
    105 public:
    106     Magic(unsigned state):state(state),ans(0){}
    107     unsigned long long retrieve(){
    108         unsigned modulo=0x7fffffff;
    109         state=((unsigned long long)state*mul+ans)%modulo;
    110         unsigned high=state;
    111         state=((unsigned long long)state*mul+ans)%modulo;
    112         return high*modulo+state;
    113     }
    114     int retrieve(int a,int b){
    115         return (int)(retrieve()%(b-a+1))+a;
    116     }
    117     void submit(unsigned k){
    118         ans=ans*mul+k;
    119     }
    120     unsigned retrieveAns(){
    121         return ans;
    122     }
    123 private:
    124     unsigned state,ans;
    125 };
    126 
    127 class DataStructure{
    128 public:
    129     int n,m;
    130     Point point[MAXN],rec[MAXN];
    131     DataStructure(){ n=m=0; }
    132     void add(int x,int y){
    133         t.insert(++m);
    134         rec[m]=Point(x,y);
    135         point[n]=Point(x,y);
    136         point[n++].id=m;
    137         n=convex_hull(point,n,point);
    138     }
    139     void erase(int r){
    140         r=*t.find_by_order(r-1);
    141         t.erase(r);
    142         for(int i=0;i<n;i++)
    143             if(point[i].id==r){
    144                 n=0;
    145                 for(auto i:t)   point[n]=rec[i],point[n++].id=i;
    146                 n=convex_hull(point,n,point);
    147                 break;
    148             }
    149     }
    150     P query(){
    151         P ans(0,0); ll len=LLMAX;
    152         for(int i=0;i<n;i++)
    153             for(int j=0;j<n;j++){
    154                 ll dis=dot(point[i],point[j]);
    155                 if(dis<len){
    156                     len=dis;
    157                     ans=P(point[i].id,point[j].id);
    158                 }
    159             }
    160         if(ans.fi>ans.se)   swap(ans.fi,ans.se);
    161         return ans;
    162     }
    163 };
    164 
    165 int main(void){
    166     int q;    cin>>q;
    167     for(int k=0;k<q;++k){
    168         t.clear();
    169         unsigned state; string s;   cin>>state>>s;
    170         DataStructure ds;   Magic magic(state);
    171         for(char c:s){
    172             if(c=='a'){
    173                 int x=magic.retrieve(-lim,lim);
    174                 int y=magic.retrieve(-lim,lim);
    175                 ds.add(x,y);
    176             }
    177             else if(c=='e'){
    178                 unsigned pos = magic.retrieve(1,t.size());
    179                 ds.erase(pos);
    180             }
    181             else if(c=='q'){
    182                 auto best=ds.query();
    183                 magic.submit(best.first);
    184                 magic.submit(best.second);
    185             }
    186         }
    187         cout<<magic.retrieveAns()<<endl;
    188     }
    189 }
  • 相关阅读:
    [UOJ#128][BZOJ4196][Noi2015]软件包管理器
    [UOJ#127][BZOJ4195][NOI2015]程序自动分析
    [BZOJ3653]谈笑风生
    Django 数据库查询优化
    C#中引用(ref关键字)参数
    C#中值参数的使用实例
    静态变量和实例变量
    全局变量和局部变量的理解
    C#方法定义和调用-2
    C#函数的方法定义和方法调用小议
  • 原文地址:https://www.cnblogs.com/dd-bond/p/11346807.html
Copyright © 2020-2023  润新知