• 杜教BM


    杜教BM递推,据说可以输入矩阵,但是我还不太清楚,

    初始数据在初始化vector容器时候输入就ok ,输出第n项

    #include <bits/stdc++.h>
     
    using namespace std;
    #define rep(i,a,n) for (long long i=a;i<n;i++)
    #define per(i,a,n) for (long long i=n-1;i>=a;i--)
    #define pb push_back
    #define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((long long)(x).size())
    typedef vector<long long> VI;
    typedef long long ll;
    typedef pair<long long,long long> PII;
    const ll mod=1e9+7;
    ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    // head
     
    long long _,n;
    namespace linear_seq
    {
        const long long N=10010;
        ll res[N],base[N],_c[N],_md[N];
     
        vector<long long> Md;
        void mul(ll *a,ll *b,long long k)
        {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k)
                _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (long long i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        long long solve(ll n,VI a,VI b)
        { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            long long k=SZ(a);
            assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (long long p=pnt;p>=0;p--)
            {
                mul(res,res,k);
                if ((n>>p)&1)
                {
                    for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s)
        {
            VI C(1,1),B(1,1);
            long long L=0,m=1,b=1;
            rep(n,0,SZ(s))
            {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n)
                {
                    VI T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                }
                else
                {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        long long gao(VI a,ll n)
        {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };
     
    int main()
    {
        while(~scanf("%I64d", &n))
        {   printf("%I64d
    ",linear_seq::gao(VI{1,5,11,36,95,281,781,2245,6336,18061, 51205},n-1));
        }
    }
    
    
  • 相关阅读:
    [leetcode]95 Unique Binary Search Trees II (Medium)
    [leetcode] 96 Unique Binary Search Trees (Medium)
    [leetcode] 72. Edit Distance (hard)
    [leetcode] 120. Triangle (Medium)
    [leetcode] 63. Unique Paths II (medium)
    [OpenGL] 不规则区域的填充算法
    [leetcode] 64. Minimum Path Sum (medium)
    ESLint入坑
    报错:for..in loops iterate over the entire prototype chain, which is virtually never what you want.
    vue解决seo优化之预渲染prerender-spa-plugin
  • 原文地址:https://www.cnblogs.com/dchnzlh/p/10427236.html
Copyright © 2020-2023  润新知