• 机器学习十讲----第一讲


    介绍:

    我们将机器学习定义为一组能够自动检测模式数据的方法,然后利用未发现的模式来预测未来的数据,或者在不确定的情况下执行各种决策(例如计划如何收集更多的数据)!

    大数据分析和人工智能已经成为整个社会发展最主要的基础推动力,两者的基础都是机器学习。大数据分析火热的深刻原因

    ·数据源︰非结构化数据(语音、视频、文本、网络数据)

    ·模型和计算能力∶深度学习、GPU、分布式系统

    . 广泛的应用场景∶营销、广告、金融、交通、医疗等

    大数据:

    是指数据采集、数据清洗、数据分析和数据应用的整个流程中的理论、技术和方法。

    机器学习:

    是大数据分析的核心内容。机器学习解决的是找到将X和Y关联的模型F,从Data到X的步骤通常是人工完成的(特征工程)。

    深度学习:

    是机器学习的一部分,其核心是自动找到对特定任务有效的特征,也即自动完成Data到X的转换。如果我们的任务Y是模拟人类(自动驾驶、围棋AlphaGo )的行为,则这类任务称为人工智能。深度学习也是目前Al中的核心技术。

    机器学习方法分类:

    有监督学习( supervised learning )

    ●数据集中的样本带有标签,有明确目标
    ●回归和分类

    无监督学习( unsupervised learning )

    ●数据集中的样本没有标签,没有明确目标
    聚类、降维、排序、密度估计、关联规则挖掘

    强化学习( reinforcement learning ),

    智慧决策的过程,通过过程模拟和观察来不断学习、提高决策能力
    例如: AlphaGo

    典型方法

    ●回归模型:线性回归、岭回归、L ASSO和回归样条等
    ●分类模型:逻辑回归、K近邻、决策树、支持向量机等

     

     

     

     

     案例:

    使用KNN对新闻主题进行自动分类:

     

    使用PageRank对全球机场进行排序:

     

  • 相关阅读:
    如何将latex格式转换成word? Lei
    SEWM2012会议报告总结 Lei
    matlab图片到word的过程 Lei
    日记——有点郁闷的一天
    牛博国际开放了,等了一个月才能看牛博。
    做什么事都没有兴趣呢,怎么这么低调呢?
    读UML书
    firefox弹出窗口关闭时执行代码刷新父窗口
    终于关注了一下传说中的小强,firebug
    MOSS Export Site Column/Site Content Type
  • 原文地址:https://www.cnblogs.com/dazhi151/p/14337332.html
Copyright © 2020-2023  润新知