• Python数据挖掘学习进度03(散点图、柱状图、直方图、饼图)


    常见图形种类及其意义:

     

     

     

     

     

     散点图;

    # 需求:探究房屋面积和房屋价格的关系
    
    # 1、准备数据
    x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
           163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
            21.61, 483.21, 245.25, 399.25, 343.35]
    
    y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
           140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
            30.74, 400.02, 205.35, 330.64, 283.45]
    # 2、创建画布
    plt.figure(figsize=(20, 8), dpi=80)
    
    # 3、绘制图像
    plt.scatter(x, y)
    
    # 4、显示图像
    plt.show()

    柱状图; 

    对比每部电影的票房收入: 

    # 1、准备数据
    movie_names = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴', '降魔传','追捕','七十七天','密战','狂兽','其它']
    tickets = [73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]
    
    # 2、创建画布
    plt.figure(figsize=(20, 8), dpi=80)
    
    # 3、绘制柱状图
    x_ticks = range(len(movie_names))
    plt.bar(x_ticks, tickets, color=['b','r','g','y','c','m','y','k','c','g','b'])
    
    # 修改x刻度
    plt.xticks(x_ticks, movie_names)
    
    # 添加标题
    plt.title("电影票房收入对比")
    
    # 添加网格显示
    plt.grid(linestyle="--", alpha=0.5)
    
    # 4、显示图像
    plt.show()

    比较相同天数的票房;

    # 1、准备数据
    movie_name = ['雷神3:诸神黄昏','正义联盟','寻梦环游记']
    
    first_day = [10587.6,10062.5,1275.7]
    first_weekend=[36224.9,34479.6,11830]
    
    # 2、创建画布
    plt.figure(figsize=(20, 8), dpi=80)
    
    # 3、绘制柱状图
    plt.bar(range(3), first_day, width=0.2, label="首日票房")
    plt.bar([0.2, 1.2, 2.2], first_weekend, width=0.2, label="首周票房")
    
    # 显示图例
    plt.legend()
    
    # 修改刻度
    plt.xticks([0.1, 1.1, 2.1], movie_name)
    
    # 4、显示图像
    plt.show()

     直方图:

     直方图和柱状图的对比:

     

     

     案例电影时长分布:

    # 需求:电影时长分布状况
    # 1、准备数据
    time = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]
    
    # 2、创建画布
    plt.figure(figsize=(20, 8), dpi=80)
    
    # 3、绘制直方图
    distance = 2
    group_num = int((max(time) - min(time)) / distance)
    
    plt.hist(time, bins=group_num, density=True)
    
    # 修改x轴刻度
    plt.xticks(range(min(time), max(time) + 2, distance))
    
    # 添加网格
    plt.grid(linestyle="--", alpha=0.5)
    
    # 4、显示图像
    plt.show()

     

     

     饼图:

     显示不同电影的拍片占比;

    # 1、准备数据
    movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']
    
    place_count = [60605,54546,45819,28243,13270,9945,7679,6799,6101,4621,20105]
    
    # 2、创建画布
    plt.figure(figsize=(20, 8), dpi=80)
    
    # 3、绘制饼图
    plt.pie(place_count, labels=movie_name, colors=['b','r','g','y','c','m','y','k','c','g','y'], autopct="%1.2f%%")
    
    # 显示图例
    plt.legend()
    
    plt.axis('equal')
    
    # 4、显示图像
    plt.show()

     总结:

     

  • 相关阅读:
    AVL树的java实现
    request和response的setCharacterEncoding()方法
    几种常用数据库连接池的使用
    String类、static关键字、Arrays类、Math类
    QT学习笔记(day02)
    QT学习笔记(day01)
    STL中栈和链表的不同实现方式的速度对比
    C++泛化双端队列
    C++泛化队列
    C++泛化栈
  • 原文地址:https://www.cnblogs.com/dazhi151/p/14337153.html
Copyright © 2020-2023  润新知