给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
给你一个整数 n ,返回和为 n 的完全平方数的 最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/perfect-squares
参考:
python
# 0279.完全平方数
class Solution:
def numSqaures(self, n: int) -> int:
"""
动态规划,完全背包, 先背包再物品
:param n:
:return:
"""
nums = [i**2 for i in range(1, n+1) if i**2 <= n]
dp = [10**4] * (n+1)
dp[0] = 0
for j in range(1, n+1):
for i in range(len(nums)):
if j >= nums[i]:
dp[j] = min(dp[j], dp[j-nums[i]]+1)
return dp[n]
def numSqaures2(self, n: int) -> int:
"""
动态规划,完全背包, 先物品再背包
:param n:
:return:
"""
nums = [i**2 for i in range(1, n+1) if i**2 <= n]
dp = [10**4] * (n+1)
dp[0] = 0
for i in range(len(nums)):
for j in range(nums[i], n+1):
dp[j] = min(dp[j], dp[j-nums[i]]+1)
return dp[n]
golang
package dynamicPrograming
import "math"
// 动态规划-完全背包-先背包再物品
func numSquares(n int) int {
dp := make([]int, n+1)
dp[0] = 0
for j:=1;j<=n;j++ { // bag
dp[j] = math.MaxInt32
for i:=1;i<=n;i++ { // 物品
if j >= i*i {
dp[j] = min(dp[j], dp[j-i*i]+1)
}
}
}
return dp[n]
}
// 动态规划-完全背包-先物后包
func numSquares2(n int) int {
dp := make([]int, n+1)
dp[0] = 0
for i:=1;i<=n;i++ {
dp[i] = math.MaxInt32
}
// 物品
for i:=1;i<=n;i++ {
// bag
for j:=i*i;j<=n;j++ {
dp[j] = min(dp[j], dp[j-i*i]+1)
}
}
return dp[n]
}
func min(a,b int) int {
if a < b {
return a
}
return b
}