• SQL化优


    1. 选择最有效率的表连接顺序

    首先要明白一点就是SQL 的语法顺序和执行顺序是不一致的
    
    SQL的语法顺序:
    
        select   【distinct】 ....from ....【xxx  join】【on】....where....group by ....having....【union】....order by......
    
    SQL的执行顺序:
    
       from ....【xxx  join】【on】....where....group by ....avg()、sum()....having....select   【distinct】....order by......
    
    from 子句--执行顺序为从后往前、从右到左
    
    表名(最后面的那个表名为驱动表,执行顺序为从后往前, 所以数据量较少的表尽量放后)
    
    where子句--执行顺序为自下而上、从右到左
    
    将可以过滤掉大量数据的条件写在where的子句的末尾性能最优
    
    group by 和order by 子句执行顺序都为从左到右
    
    select子句--少用*号,尽量取字段名称。 使用列名意味着将减少消耗时间。
    

    2.避免产生笛卡尔积

    含有多表的sql语句,必须指明各表的连接条件,以避免产生笛卡尔积。N个表连接需要N-1个连接条件。
    

    3.避免使用*

    当你想在select子句中列出所有的列时,使用动态sql列引用“*			”是一个方便的方法,不幸的是,是一种非常低效的方法。sql解析过程中,还需要把“*”依次转换为所有的列名,这个工作需要查询数据字典完成!
    

    4.用where子句替换having子句

    where子句搜索条件在进行分组操作之前应用;而having自己条件在进行分组操作之后应用。避免使用having子句,having子句只会在检索出所有纪录之后才对结果集进行过滤,这个处理需要排序,总计等操作。如果能通过where子句限制记录的数目,那就能减少这方面的开销。
    

    5.用exists、not exists和in、not in相互替代

    原则是哪个的子查询产生的结果集小,就选哪个
    
    select * from t1 where x in (select y from t2)
    
    select * from t1 where exists (select null from t2 where y =x)
    
    IN适合于外表大而内表小的情况;exists适合于外表小而内表大的情况
    

    6.使用exists替代distinct

    当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在select子句中使用distinct,一般可以考虑使用exists代替,exists使查询更为迅速,因为子查询的条件一旦满足,立马返回结果。
    
    低效写法:
    
    select distinct dept_no,dept_name from dept d,emp e where d.dept_no=e.dept_no
    
    高效写法:
    
    select dept_no,dept_name from dept d where  exists (select 'x' from emp e where e.dept_no=d.dept_no)
    
    备注:其中x的意思是:因为exists只是看子查询是否有结果返回,而不关心返回的什么内容,因此建议写一个常量,性能较高!
    
    用exists的确可以替代distinct,不过以上方案仅适用dept_no为唯一主键的情况,如果要去掉重复记录,需要参照以下写法:
    
    select * from emp  where dept_no exists (select Max(dept_no)) from dept d, emp e where e.dept_no=d.dept_no group by d.dept_no)
    

    7.避免隐式数据类型转换

    隐式数据类型转换不能适用索引,导致全表扫描!t_tablename表的phonenumber字段为varchar类型
    
    以下代码不符合规范:
    
    select column1 into i_l_variable1 from t_tablename where phonenumber=18519722169;
    
    应编写如下:
    
    select column1 into i_lvariable1 from t_tablename where phonenumber='18519722169';
    

    8.使用索引来避免排序操作

    在执行频度高,又含有排序操作的sql语句,建议适用索引来避免排序。排序是一种昂贵的操作,在一秒钟执行成千上万次的sql语句中,如果带有排序操作,往往会消耗大量的系统资源,性能低下。索引是一种有序结果,如果order by后面的字段上建有索引,将会大大提升效率!
    

    9.尽量使用前端匹配的模糊查询

    例如,column1 like 'ABC%'方式,可以对column1字段进行索引范围扫描;而column1 kike '%ABC%'方式,即使column1字段上存在索引,也无法使用该索引,只能走全表扫描。
    

    10不要在选择性较低的字段建立索引

    在选择性较低的字段使用索引,不但不会降低逻辑I/O,相反,往往会增加大量逻辑I/O降低性能。比如,性别列,男和女!
    

    11.避免对列的操作

    不要在where条件中对字段进行数学表达式运算,任何对列的操作都可能导致全表扫描,这里所谓的操作,包括数据库函数,计算表达式等等,查询时要尽可能将操作移到等式的右边,甚至去掉函数。
    
    例如:下列sql条件语句中的列都建有恰当的索引,但几十万条数据下已经执行非常慢了:
    
    select * from record where amount/30<1000 (执行时间11s)
    
    由于where子句中对列的任何操作结果都是在sql运行时逐行计算得到,因此它不得不进行全表扫描,而没有使用上面的索引;如果这些结果在查询编译时就能得到,那么就可以被sql优化器优化,使用索引,避免全表扫描,因此sql重写如下:
    
    select * from record where amount<1000*30 (执行时间不到1秒)
    

    12.尽量去掉"IN","OR"

    含有"IN"、"OR"的where子句常会使用工作表,使索引失效,如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引;
    
    select count(*) from stuff where id_no in('0','1')
    
    可以拆开为:
    
    select count(*) from stuff where id_no='0'
    
    select count(*) from stuff where id_no='1'
    
    然后在做一个简单的加法
    

    13.尽量去掉"<>"

    尽量去掉"<>",避免全表扫描,如果数据是枚举值,且取值范围固定,可以使用"or"方式
    
    update serviceinfo set state=0 where state<>0;
    
    以上语句由于其中包含了"<>",执行计划中用了全表扫描(Table access full),没有用到state字段上的索引,实际应用中,由于业务逻辑的限制,字段state智能是枚举值,例如0,1或2,因此可以去掉"<>" 利用索引来提高效率。
    
    update serviceinfo set state=0 where state =1 or state =2
    

    14.避免在索引列上使用IS NULL或者NOT

    避免在索引中使用任何可以为空的列,导致无法使用索引
    

    15.批量提交sql

    如果你需要在一个在线的网站上去执行一个大的DELETE或INSERT查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
    
    Apache会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
    
    如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程或线程,数据库链接,打开的文件数,可能不仅仅会让你的WEB服务崩溃,还可能会让你的整台服务器马上挂了。所以,如果你有一个大的处理,你一定把其拆分。
    希望你眼眸有星辰,心中有山海,从此以梦为马,不负韶华
  • 相关阅读:
    redis消息队列
    redis数据结构及使用场景
    HTTP状态码
    ASP.NET处理管道初谈
    kNN(k邻近算法)
    HeadFirst
    Python学习笔记——进程、线程、网络编程
    Python学习笔记-20180428——处理JSON
    Python学习笔记-20180426
    基于百度地图的 JavaScript API示例学习
  • 原文地址:https://www.cnblogs.com/daviddd/p/12048114.html
Copyright © 2020-2023  润新知