• 字符串的排列组合问题


    问题1 :输入一个字符串,打印出该字符串中字符的所有排列。例如输入字符串abc,则输出由字符abc所能排列出来的所有字符串abcacbbacbcacabcba

        思路:这是个递归求解的问题。递归算法有四个特性:(1)必须有可达到的终止条件,否则程序将陷入死循环;(2)子问题在规模上比原问题小;(3)子问题可通过再次递归调用求解;(4)子问题的解应能组合成整个问题的解。

        对于字符串的排列问题。如果能生成n - 1个元素的全排列,就能生成n个元素的全排列。对于只有1个元素的集合,可以直接生成全排列。全排列的递归终止条件很明确,只有1个元素时。下面这个图很清楚的给出了递归的过程。


        参考代码:解法1通过Permutation_Solution1(str, 0, n); 解法2通过调用Permutation_Solution2(str, str)来求解问题。

    1. //函数功能 : 求一个字符串某个区间内字符的全排列  
    2. //函数参数 : pStr为字符串,begin和end表示区间  
    3. //返回值 :   无  
    4. void Permutation_Solution1(char *pStr, int begin, int end)  
    5. {  
    6.     if(begin == end - 1) //只剩一个元素  
    7.     {  
    8.         for(int i = 0; i < end; i++) //打印  
    9.             cout<<pStr[i];  
    10.         cout<<endl;  
    11.     }  
    12.     else  
    13.     {  
    14.         for(int k = begin; k < end; k++)  
    15.         {  
    16.             swap(pStr[k], pStr[begin]); //交换两个字符  
    17.             Permutation_Solution1(pStr, begin + 1, end);  
    18.             swap(pStr[k],pStr[begin]);  //恢复  
    19.         }  
    20.     }  
    21. }  
    22.   
    23. //函数功能 : 求一个字符串某个区间内字符的全排列  
    24. //函数参数 : pStr为字符串,pBegin为开始位置  
    25. //返回值 :   无  
    26. void Permutation_Solution2(char *pStr, char *pBegin)  
    27. {  
    28.     if(*pBegin == '\0')  
    29.     {  
    30.         cout<<pStr<<endl;  
    31.     }  
    32.     else  
    33.     {  
    34.         char *pCh = pBegin;  
    35.         while(*pCh != '\0')  
    36.         {  
    37.             swap(*pBegin, *pCh);  
    38.             Permutation_Solution2(pStr, pBegin + 1);  
    39.             swap(*pBegin, *pCh);  
    40.             pCh++;  
    41.         }  
    42.     }  
    43. }  
    44. //提供的公共接口  
    45. void Permutation(char *pStr)  
    46. {  
    47.     Permutation_Solution1(pStr, 0, strlen(pStr));  
    48.     //Permutation_Solution2(pStr,pStr);  
    49. }  

        问题2:输入一个字符串,输出该字符串中字符的所有组合。举个例子,如果输入abc,它的组合有a、b、c、ab、ac、bc、abc。

        思路:同样是用递归求解。可以考虑求长度为n的字符串中m个字符的组合,设为C(n,m)。原问题的解即为C(n, 1), C(n, 2),...C(n, n)的总和。对于求C(n, m),从第一个字符开始扫描,每个字符有两种情况,要么被选中,要么不被选中,如果被选中,递归求解C(n-1, m-1)。如果未被选中,递归求解C(n-1, m)。不管哪种方式,n的值都会减少,递归的终止条件n=0或m=0。

    1. //函数功能 : 从一个字符串中选m个元素  
    2. //函数参数 : pStr为字符串, m为选的元素个数, result为选中的  
    3. //返回值 :   无  
    4. void Combination_m(char *pStr, int m, vector<char> &result)  
    5. {  
    6.     if(pStr == NULL || (*pStr == '\0'&& m != 0))  
    7.         return;  
    8.     if(m == 0) //递归终止条件  
    9.     {  
    10.         for(unsigned i = 0; i < result.size(); i++)  
    11.             cout<<result[i];  
    12.         cout<<endl;  
    13.         return;  
    14.     }  
    15.     //选择这个元素  
    16.     result.push_back(*pStr);  
    17.     Combination_m(pStr + 1, m - 1, result);  
    18.     result.pop_back();  
    19.     //不选择这个元素  
    20.     Combination_m(pStr + 1, m, result);  
    21. }  
    22. //函数功能 : 求一个字符串的组合  
    23. //函数参数 : pStr为字符串  
    24. //返回值 :   无  
    25. void Combination(char *pStr)  
    26. {  
    27.     if(pStr == NULL || *pStr == '\0')  
    28.         return;  
    29.     int number = strlen(pStr);  
    30.     for(int i = 1; i <= number; i++)  
    31.     {  
    32.         vector<char> result;  
    33.         Combination_m(pStr, i, result);  
    34.     }  
    35. }  

         问题3:打靶问题。一个射击运动员打靶,靶一共有10环,连开10 枪打中90环的可能性有多少?

         思路:这道题的思路与字符串的组合很像,用递归解决。一次射击有11种可能,命中1环至10环,或脱靶。

         参考代码:

    1. //函数功能 : 求解number次打中sum环的种数  
    2. //函数参数 : number为打靶次数,sum为需要命中的环数,result用来保存中间结果,total记录种数   
    3. //返回值 :   无  
    4. void ShootProblem_Solution1(int number, int sum, vector<int> &result, int *total)  
    5. {  
    6.     if(sum < 0 || number * 10 < sum) //加number * 10 < sum非常重要,它可以减少大量的递归,类似剪枝操作  
    7.         return;  
    8.     if(number == 1) //最后一枪  
    9.     {  
    10.         if(sum <= 10) //如果剩余环数小于10,只要最后一枪打sum环就可以了  
    11.         {  
    12.             for(unsigned i = 0; i < result.size(); i++)  
    13.                 cout<<result[i]<<' ';  
    14.             cout<<sum<<endl;  
    15.             (*total)++;  
    16.             return;  
    17.         }  
    18.         else  
    19.             return;  
    20.     }  
    21.     for(unsigned i = 0; i <= 10; i++) //命中0-10环  
    22.     {  
    23.         result.push_back(i);  
    24.         ShootProblem_Solution1(number-1, sum-i, result, total); //针对剩余环数递归求解  
    25.         result.pop_back();  
    26.     }  
    27. }  
    28. //提供的公共接口  
    29. void ShootProblem(int number, int sum)  
    30. {  
    31.     int total = 0;  
    32.     vector<int> result;  
    33.     ShootProblem_Solution1(number, sum, result, &total);  
    34.     cout<<"total nums = "<<total<<endl;  
    35. }  

         

    FROM:http://blog.csdn.net/wuzhekai1985/article/details/6643127

  • 相关阅读:
    考试 题目
    引用数据类型 Scanner和 Random
    数组
    数据字典 事物 序列 索引视图
    小程序下拉刷新
    使用e.target.dataset的问题
    动态统计当前输入内容的字节、字符数
    小程序根据input输入,动态设置按钮的样式
    小程序刨坑(一)
    charles 踩坑记录
  • 原文地址:https://www.cnblogs.com/dartagnan/p/2179497.html
Copyright © 2020-2023  润新知