题目:n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字)。当一个数字删除后,从被删除数字的下一个继续删除第m个数字。求出在这个圆圈中剩下的最后一个数字。
分析:既然题目有一个数字圆圈,很自然的想法是我们用一个数据结构来模拟这个圆圈。在常用的数据结构中,我们很容易想到用环形列表。我们可以创建一个总共有m个数字的环形列表,然后每次从这个列表中删除第m个元素。
在参考代码中,我们用STL中std::list来模拟这个环形列表。由于list并不是一个环形的结构,因此每次跌代器扫描到列表末尾的时候,要记得把跌代器移到列表的头部。这样就是按照一个圆圈的顺序来遍历这个列表了。
这种思路需要一个有n个结点的环形列表来模拟这个删除的过程,因此内存开销为O(n)。而且这种方法每删除一个数字需要m步运算,总共有n个数字,因此总的时间复杂度是O(mn)。当m和n都很大的时候,这种方法是很慢的。
接下来我们试着从数学上分析出一些规律。首先定义最初的n个数字(0,1,…,n-1)中最后剩下的数字是关于n和m的方程为f(n,m)。
在这n个数字中,第一个被删除的数字是m%n-1,为简单起见记为k。那么删除k之后的剩下n-1的数字为0,1,…,k-1,k+1,…,n-1,并且下一个开始计数的数字是k+1。相当于在剩下的序列中,k+1排到最前面,从而形成序列k+1,…,n-1,0,…k-1。该序列最后剩下的数字也应该是关于n和m的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0开始的连续序列),因此该函数不同于前面函数,记为f’(n-1,m)。最初序列最后剩下的数字f(n,m)一定是剩下序列的最后剩下数字f’(n-1,m),所以f(n,m)=f’(n-1,m)。
接下来我们把剩下的的这n-1个数字的序列k+1,…,n-1,0,…k-1作一个映射,映射的结果是形成一个从0到n-2的序列:
k+1 -> 0
k+2 -> 1
…
n-1 -> n-k-2
0 -> n-k-1
…
k-1 -> n-2
把映射定义为p,则p(x)= (x-k-1)%n,即如果映射前的数字是x,则映射后的数字是(x-k-1)%n。对应的逆映射是p-1(x)=(x+k+1)%n。
由于映射之后的序列和最初的序列有同样的形式,都是从0开始的连续序列,因此仍然可以用函数f来表示,记为f(n-1,m)。根据我们的映射规则,映射之前的序列最后剩下的数字f’(n-1,m)= p-1 [f(n-1,m)]=[f(n-1,m)+k+1]%n。把k=m%n-1代入得到f(n,m)=f’(n-1,m)=[f(n-1,m)+m]%n。
经过上面复杂的分析,我们终于找到一个递归的公式。要得到n个数字的序列的最后剩下的数字,只需要得到n-1个数字的序列的最后剩下的数字,并可以依此类推。当n=1时,也就是序列中开始只有一个数字0,那么很显然最后剩下的数字就是0。我们把这种关系表示为:
0 n=1
f(n,m)={
[f(n-1,m)+m]%n n>1
尽管得到这个公式的分析过程非常复杂,但它用递归或者循环都很容易实现。最重要的是,这是一种时间复杂度为O(n),空间复杂度为O(1)的方法,因此无论在时间上还是空间上都优于前面的思路
/////////////////////////////////////////////////////////////////////// // n integers (0, 1, ... n - 1) form a circle. Remove the mth from // the circle at every time. Find the last number remaining // Input: n - the number of integers in the circle initially // m - remove the mth number at every time // Output: the last number remaining when the input is valid, // otherwise -1 /////////////////////////////////////////////////////////////////////// int LastRemaining_Solution1(unsigned int n, unsigned int m) { // invalid input if(n < 1 || m < 1) return -1; unsigned int i = 0; // initiate a list with n integers (0, 1, ... n - 1) list<int> integers; for(i = 0; i < n; ++ i) integers.push_back(i); list<int>::iterator curinteger = integers.begin(); while(integers.size() > 1) { // find the mth integer. Note that std::list is not a circle // so we should handle it manually for(int i = 1; i < m; ++ i) { curinteger ++; if(curinteger == integers.end()) curinteger = integers.begin(); } // remove the mth integer. Note that std::list is not a circle // so we should handle it manually list<int>::iterator nextinteger = ++ curinteger; if(nextinteger == integers.end()) nextinteger = integers.begin(); -- curinteger; integers.erase(curinteger); curinteger = nextinteger; } return *(curinteger); } /////////////////////////////////////////////////////////////////////// // n integers (0, 1, ... n - 1) form a circle. Remove the mth from // the circle at every time. Find the last number remaining // Input: n - the number of integers in the circle initially // m - remove the mth number at every time // Output: the last number remaining when the input is valid, // otherwise -1 /////////////////////////////////////////////////////////////////////// int LastRemaining_Solution1(unsigned int n, unsigned int m) { // invalid input if(n < 1 || m < 1) return -1; unsigned int i = 0; // initiate a list with n integers (0, 1, ... n - 1) list<int> integers; for(i = 0; i < n; ++ i) integers.push_back(i); list<int>::iterator curinteger = integers.begin(); while(integers.size() > 1) { // find the mth integer. Note that std::list is not a circle // so we should handle it manually for(int i = 1; i < m; ++ i) { curinteger ++; if(curinteger == integers.end()) curinteger = integers.begin(); } // remove the mth integer. Note that std::list is not a circle // so we should handle it manually list<int>::iterator nextinteger = ++ curinteger; if(nextinteger == integers.end()) nextinteger = integers.begin(); -- curinteger; integers.erase(curinteger); curinteger = nextinteger; } return *(curinteger); }
思路二的参考代码:
/////////////////////////////////////////////////////////////////////// // n integers (0, 1, ... n - 1) form a circle. Remove the mth from // the circle at every time. Find the last number remaining // Input: n - the number of integers in the circle initially // m - remove the mth number at every time // Output: the last number remaining when the input is valid, // otherwise -1 /////////////////////////////////////////////////////////////////////// int LastRemaining_Solution2(int n, unsigned int m) { // invalid input if(n <= 0 || m < 0) return -1; // if there are only one integer in the circle initially, // of course the last remaining one is 0 int lastinteger = 0; // find the last remaining one in the circle with n integers for (int i = 2; i <= n; i ++) lastinteger = (lastinteger + m) % i; return lastinteger; }