注:下面的的驱动版本不要安装最新(默认)的版本,因为会遇到各种问题,将会浪费你的大量时间。(当然大神无视)
环境
系统:Ubuntu 18.04 LTS
显卡:GTX1080Ti
CUDA:9.0
cuDNN:7.0
TensorFlow:teansorflow-gpu 1.9
Python版本:3.6
一、安装NVIDIA显卡驱动
1.删除旧的驱动。
原来Linux默认安装的显卡驱动不是英伟达的驱动,所以先把旧得驱动删除掉。
sudo apt-get purge nvidia*
2.禁止自带的nouveau nvidia驱动。
2.1 打开配置文件:
sudo gedit /etc/modprobe.d/blacklist-nouveau.conf
2.2填写禁止配置的内容:
blacklist nouveau options nouveau modeset=0
2.3更新配置文件:
sudo update-initramfs -u
重启电脑!
2.4检查设置
(因为禁止了显卡的驱动,这时你的电脑分辨率会变成800*600,图标格式将会很不和谐,当然通过这个可以看出,是否完成这上面的操作)
lsmod | grep nouveau
*如果屏幕没有输出则禁用nouveau成功
3 正式安装
法一:ppa源安装(原生安装)
1.添加Graphic Drivers PPA
sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt-get update
2.查看合适的驱动版本:
ubuntu-drivers devices
3.在这里我选择合适的396版本:
sudo apt-get install nvidia-driver-396
重启电脑!
4.安装成功检查:
sudo nvidia-smi sudo nvidia-settings
*最直接的方法是进入到系统的“软件和更新”,点击进入到“附加驱动”,选择你需要安装的英伟达驱动,然后点击“应用更改”,便能进行安装了。注意的是这个方法适合网速较好的环境下进行。
法二:server版安装
去官网挑选合适自己的驱动版本:https://www.geforce.cn/drivers
1.给安装文件添加权限
sudo chmod +x NVIDIA-Linux-x86_64-396.18.run
2.安装驱动
sudo sh NVIDIA-Linux-x86_64-396.18.run
安装第一部会提示协议条款,accept即可;之后按照提示进行安装,中间会提示警告32-bit文件无法安装,忽略即可,接着下一步;接下来根据提示一步一步安装即可。
重启电脑!
3.检查安装
同上!
二、安装CUDA
1、官网下载:https://developer.nvidia.com/cuda-90-download-archive
我的如下:
2、安装依赖库
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
否则将会报错:
3、注意C++G++版本
CUDA9.0要求GCC版本是5.x或者6.x,其他版本不可以,需要自己进行配置,通过以下命令才对gcc版本进行修改。
查看版本:
g++ --version
版本安装:
sudo apt-get install gcc-5 sudo apt-get install g++-5
通过命令替换掉之前的版本:
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 50 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 50
最后记得再次查看版本是否修改成功。
4、运行run文件
sudo sh cuda_9.0.176_384.81_linux.run
安装协议可以直接按q跳到最末尾,注意一项:
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81? (y)es/(n)o/(q)uit: n # 安装NVIDIA加速图形驱动程序,这里选择n
5、添加环境变量
进行环境的配置,打开环境变量配置文件
sudo gedit ~/.bashrc
在末尾把以下配置写入并保存:
#CUDA export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
最后执行:
source ~/.bashrc
6、安装测试
在安装的时候也也相应安装了一些cuda的一些例子,可以进入例子的文件夹然后使用make命令执行。
例一:
1.进入例子文件
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
2.执行make命令
sudo make
3. 第三步
./deviceQuery
如果结果有GPU的信息,说明安装成功。
例二:
1. 进入例子对应的文件夹
cd NVIDIA_CUDA-9.0_Samples/5_Simulations/fluidsGL
2.执行make
make clean && make
3. 运行
./fluidsGL
当执行这个例子,我们会看到流动的图,刚开始可能看不到黑洞,需要等待一小段时间。不过记得用鼠标点击下绿色的画面。
三、安装cuDNN
1、官网下载:https://developer.nvidia.com/rdp/form/cudnn-download-survey
这个需要注册账号,拿自己的邮箱注册即可。
只需下载下面3个安装包即可
2、顺序执行下面3个安装命令:
sudo dpkg -i libcudnn7_7.0.3.11-1+cuda9.0_amd64.deb sudo dpkg -i libcudnn7-dev_7.0.3.11-1+cuda9.0_amd64.deb sudo dpkg -i libcudnn7-doc_7.0.3.11-1+cuda9.0_amd64.deb
3、安装测试
输入以下命令:
cp -r /usr/src/cudnn_samples_v7/ $HOME cd $HOME/cudnn_samples_v7/mnistCUDNN make clean && make ./mnistCUDNN
最终如果有提示信息:“Test passed! ”,则说明安装成功!
四、安装TensorFlow
1.pip直接安装,由于我个人项目需要,所以安装了1.9.0的版本
pip install tensorflow_gpu-1.9.0
*注意:如果计划拿TensorFlow来开发android平台的深度学习模型,需要源码安装。