• (原)torch中显示nn.Sequential()网络的详细情况


    转载请注明出处:

    http://www.cnblogs.com/darkknightzh/p/6065526.html

    本部分多试几次就可以弄得清每一层具体怎么访问了。

    step1. 网络定义如下:

    require "dpnn"
    local net = nn.Sequential()
    net:add(nn.SpatialConvolution(3, 64, 7, 7, 2, 2, 3, 3))
    net:add(nn.SpatialBatchNormalization(64))
    net:add(nn.ReLU())
    net:add(nn.SpatialMaxPooling(3, 3, 2, 2, 1, 1))
    net:add(nn.Inception{
         inputSize = 64,
         kernelSize = {3, 5},
         kernelStride = {1, 1},
         outputSize = {128, 32},
         reduceSize = {96, 16, 32, 64},
         pool = nn.SpatialMaxPooling(3, 3, 1, 1, 1, 1),
         batchNorm = true
       })
    net:evaluate()

    上面的网络,包含conv+BatchNorm+ReLU+Maxpool+Inception层。

    step2. 直接通过print(net)便可得到其网络结构:

    nn.Sequential {
      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
      (1): nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3)
      (2): nn.SpatialBatchNormalization
      (3): nn.ReLU
      (4): nn.SpatialMaxPooling(3x3, 2,2, 1,1)
      (5): nn.Inception @ nn.DepthConcat {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
          |      (1): nn.SpatialConvolution(64 -> 96, 1x1)
          |      (2): nn.SpatialBatchNormalization
          |      (3): nn.ReLU
          |      (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
          |      (5): nn.SpatialBatchNormalization
          |      (6): nn.ReLU
          |    }
          |`-> (2): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
          |      (1): nn.SpatialConvolution(64 -> 16, 1x1)
          |      (2): nn.SpatialBatchNormalization
          |      (3): nn.ReLU
          |      (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2)
          |      (5): nn.SpatialBatchNormalization
          |      (6): nn.ReLU
          |    }
          |`-> (3): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> output]
          |      (1): nn.SpatialMaxPooling(3x3, 1,1, 1,1)
          |      (2): nn.SpatialConvolution(64 -> 32, 1x1)
          |      (3): nn.SpatialBatchNormalization
          |      (4): nn.ReLU
          |    }
          |`-> (4): nn.Sequential {
                 [input -> (1) -> (2) -> (3) -> output]
                 (1): nn.SpatialConvolution(64 -> 64, 1x1)
                 (2): nn.SpatialBatchNormalization
                 (3): nn.ReLU
               }
           ... -> output
      }
    }
    View Code

    但实际上该网络还包括input,output,gradInput等参数。

    step3. 使用下面代码便可输出网络比较详细的参数:

    for k,curLayer in pairs(net) do
        print(k,curLayer)
    end

    step4. 输出:

    _type	torch.DoubleTensor	
    output	[torch.DoubleTensor with no dimension]
    
    gradInput	[torch.DoubleTensor with no dimension]
    
    modules	{
      1 : 
        {
          dH : 2
          dW : 2
          nInputPlane : 3
          output : DoubleTensor - empty
          kH : 7
          train : false
          gradBias : DoubleTensor - size: 64
          padH : 3
          bias : DoubleTensor - size: 64
          weight : DoubleTensor - size: 64x3x7x7
          _type : "torch.DoubleTensor"
          gradWeight : DoubleTensor - size: 64x3x7x7
          padW : 3
          nOutputPlane : 64
          kW : 7
          gradInput : DoubleTensor - empty
        }
      2 : 
        {
          gradBias : DoubleTensor - size: 64
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          running_var : DoubleTensor - size: 64
          momentum : 0.1
          gradWeight : DoubleTensor - size: 64
          eps : 1e-05
          _type : "torch.DoubleTensor"
          affine : true
          running_mean : DoubleTensor - size: 64
          bias : DoubleTensor - size: 64
          weight : DoubleTensor - size: 64
          train : false
        }
      3 : 
        {
          inplace : false
          threshold : 0
          _type : "torch.DoubleTensor"
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          train : false
          val : 0
        }
      4 : 
        {
          dH : 2
          dW : 2
          kW : 3
          gradInput : DoubleTensor - empty
          indices : DoubleTensor - empty
          train : false
          _type : "torch.DoubleTensor"
          padH : 1
          ceil_mode : false
          output : DoubleTensor - empty
          kH : 3
          padW : 1
        }
      5 : 
        {
          outputSize : 
            {
              1 : 128
              2 : 32
            }
          inputSize : 64
          gradInput : DoubleTensor - empty
          modules : 
            {
              1 : 
                {
                  train : false
                  _type : "torch.DoubleTensor"
                  output : DoubleTensor - empty
                  gradInput : DoubleTensor - empty
                  modules : 
                    {
                      1 : {...}
                      2 : {...}
                      3 : {...}
                      4 : {...}
                    }
                  dimension : 2
                  size : LongStorage - size: 0
                }
            }
          kernelStride : 
            {
              1 : 1
              2 : 1
            }
          _type : "torch.DoubleTensor"
          module : 
            {
              train : false
              _type : "torch.DoubleTensor"
              output : DoubleTensor - empty
              gradInput : DoubleTensor - empty
              modules : 
                {
                  1 : 
                    {
                      _type : "torch.DoubleTensor"
                      output : DoubleTensor - empty
                      gradInput : DoubleTensor - empty
                      modules : {...}
                      train : false
                    }
                  2 : 
                    {
                      _type : "torch.DoubleTensor"
                      output : DoubleTensor - empty
                      gradInput : DoubleTensor - empty
                      modules : {...}
                      train : false
                    }
                  3 : 
                    {
                      _type : "torch.DoubleTensor"
                      output : DoubleTensor - empty
                      gradInput : DoubleTensor - empty
                      modules : {...}
                      train : false
                    }
                  4 : 
                    {
                      _type : "torch.DoubleTensor"
                      output : DoubleTensor - empty
                      gradInput : DoubleTensor - empty
                      modules : {...}
                      train : false
                    }
                }
              dimension : 2
              size : LongStorage - size: 0
            }
          poolStride : 1
          padding : true
          reduceStride : {...}
          transfer : 
            {
              inplace : false
              threshold : 0
              _type : "torch.DoubleTensor"
              output : DoubleTensor - empty
              gradInput : DoubleTensor - empty
              val : 0
            }
          batchNorm : true
          train : false
          pool : 
            {
              dH : 1
              dW : 1
              kW : 3
              gradInput : DoubleTensor - empty
              indices : DoubleTensor - empty
              train : false
              _type : "torch.DoubleTensor"
              padH : 1
              ceil_mode : false
              output : DoubleTensor - empty
              kH : 3
              padW : 1
            }
          poolSize : 3
          reduceSize : 
            {
              1 : 96
              2 : 16
              3 : 32
              4 : 64
            }
          kernelSize : 
            {
              1 : 3
              2 : 5
            }
          output : DoubleTensor - empty
        }
    }
    train	false	
    View Code

    上面的modules中,分别为conv、BatchNorm、ReLU、Maxpool、Inception对应的参数。

    step5. 可通过net.modules[1]来索引nn.SpatialConvolution。如print(net.modules[1])得到:

    nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3)

    step6. 如果想更进一步,输出该层的参数,可以使用如下代码(实际上step4中已经输出了):

    for k,curLayer in pairs(net.modules[1]) do
        if type(curLayer) ~= 'userdata' then
            print(k,curLayer)
        else
            local strval = ' '
            for i = 1, curLayer:dim() do 
                strval = strval .. curLayer:size(i) .. " "
            end
            print(k .. " " .. type(curLayer) .. " " .. string.format("27[31m size: %s", strval))
        end
    end

    step7. 得到的结果为:

    dH	2	
    dW	2	
    nInputPlane	3	
    output userdata  size:  	
    kH	7	
    train	false	
    gradBias userdata  size:  64 	
    padH	3	
    bias userdata  size:  64 	
    weight userdata  size:  64 3 7 7 	
    _type	torch.DoubleTensor	
    gradWeight userdata  size:  64 3 7 7 	
    padW	3	
    nOutputPlane	64	
    kW	7	
    gradInput userdata  size:
    View Code

    step8. 对于Inception层,step4中并没有完全显示出来。按照step5中的方式,使用net.modules[5]来得到Inception层。将step6进行更改,可输出:

    outputSize	{
      1 : 128
      2 : 32
    }
    inputSize	64	
    gradInput userdata  size:  	
    modules	{
      1 : 
        {
          train : false
          _type : "torch.DoubleTensor"
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          modules : 
            {
              1 : 
                {
                  _type : "torch.DoubleTensor"
                  output : DoubleTensor - empty
                  gradInput : DoubleTensor - empty
                  modules : 
                    {
                      1 : {...}
                      2 : {...}
                      3 : {...}
                      4 : {...}
                      5 : {...}
                      6 : {...}
                    }
                  train : false
                }
              2 : 
                {
                  _type : "torch.DoubleTensor"
                  output : DoubleTensor - empty
                  gradInput : DoubleTensor - empty
                  modules : 
                    {
                      1 : {...}
                      2 : {...}
                      3 : {...}
                      4 : {...}
                      5 : {...}
                      6 : {...}
                    }
                  train : false
                }
              3 : 
                {
                  _type : "torch.DoubleTensor"
                  output : DoubleTensor - empty
                  gradInput : DoubleTensor - empty
                  modules : 
                    {
                      1 : {...}
                      2 : {...}
                      3 : {...}
                      4 : {...}
                    }
                  train : false
                }
              4 : 
                {
                  _type : "torch.DoubleTensor"
                  output : DoubleTensor - empty
                  gradInput : DoubleTensor - empty
                  modules : 
                    {
                      1 : {...}
                      2 : {...}
                      3 : {...}
                    }
                  train : false
                }
            }
          dimension : 2
          size : LongStorage - size: 0
        }
    }
    kernelStride	{
      1 : 1
      2 : 1
    }
    _type	torch.DoubleTensor	
    module	nn.DepthConcat {
      input
        |`-> (1): nn.Sequential {
        |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
        |      (1): nn.SpatialConvolution(64 -> 96, 1x1)
        |      (2): nn.SpatialBatchNormalization
        |      (3): nn.ReLU
        |      (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
        |      (5): nn.SpatialBatchNormalization
        |      (6): nn.ReLU
        |    }
        |`-> (2): nn.Sequential {
        |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output]
        |      (1): nn.SpatialConvolution(64 -> 16, 1x1)
        |      (2): nn.SpatialBatchNormalization
        |      (3): nn.ReLU
        |      (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2)
        |      (5): nn.SpatialBatchNormalization
        |      (6): nn.ReLU
        |    }
        |`-> (3): nn.Sequential {
        |      [input -> (1) -> (2) -> (3) -> (4) -> output]
        |      (1): nn.SpatialMaxPooling(3x3, 1,1, 1,1)
        |      (2): nn.SpatialConvolution(64 -> 32, 1x1)
        |      (3): nn.SpatialBatchNormalization
        |      (4): nn.ReLU
        |    }
        |`-> (4): nn.Sequential {
               [input -> (1) -> (2) -> (3) -> output]
               (1): nn.SpatialConvolution(64 -> 64, 1x1)
               (2): nn.SpatialBatchNormalization
               (3): nn.ReLU
             }
         ... -> output
    }
    poolStride	1	
    padding	true	
    reduceStride	{}
    transfer	nn.ReLU
    batchNorm	true	
    train	false	
    pool	nn.SpatialMaxPooling(3x3, 1,1, 1,1)
    poolSize	3	
    reduceSize	{
      1 : 96
      2 : 16
      3 : 32
      4 : 64
    }
    kernelSize	{
      1 : 3
      2 : 5
    }
    output userdata  size: 
    View Code

    step9.step8中,modules中为对应的inception各层(3*3卷积,5*5卷积,pooling,1*1reduce)。可通过net.modules[5].module来得到这些层。该层也有train,output,gradInput,modules等变量。可通过print(net.modules[5].module)来输出。

    step10. 根据step5中的思路,可通过net.modules[5].module.modules[1]来得到3*3卷基层具体情况:

    _type	torch.DoubleTensor	
    output userdata  size:  	
    gradInput userdata  size:  	
    modules	{
      1 : 
        {
          dH : 1
          dW : 1
          nInputPlane : 64
          output : DoubleTensor - empty
          kH : 1
          train : false
          gradBias : DoubleTensor - size: 96
          padH : 0
          bias : DoubleTensor - size: 96
          weight : DoubleTensor - size: 96x64x1x1
          _type : "torch.DoubleTensor"
          gradWeight : DoubleTensor - size: 96x64x1x1
          padW : 0
          nOutputPlane : 96
          kW : 1
          gradInput : DoubleTensor - empty
        }
      2 : 
        {
          gradBias : DoubleTensor - size: 96
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          running_var : DoubleTensor - size: 96
          momentum : 0.1
          gradWeight : DoubleTensor - size: 96
          eps : 1e-05
          _type : "torch.DoubleTensor"
          affine : true
          running_mean : DoubleTensor - size: 96
          bias : DoubleTensor - size: 96
          weight : DoubleTensor - size: 96
          train : false
        }
      3 : 
        {
          inplace : false
          threshold : 0
          _type : "torch.DoubleTensor"
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          train : false
          val : 0
        }
      4 : 
        {
          dH : 1
          dW : 1
          nInputPlane : 96
          output : DoubleTensor - empty
          kH : 3
          train : false
          gradBias : DoubleTensor - size: 128
          padH : 1
          bias : DoubleTensor - size: 128
          weight : DoubleTensor - size: 128x96x3x3
          _type : "torch.DoubleTensor"
          gradWeight : DoubleTensor - size: 128x96x3x3
          padW : 1
          nOutputPlane : 128
          kW : 3
          gradInput : DoubleTensor - empty
        }
      5 : 
        {
          gradBias : DoubleTensor - size: 128
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          running_var : DoubleTensor - size: 128
          momentum : 0.1
          gradWeight : DoubleTensor - size: 128
          eps : 1e-05
          _type : "torch.DoubleTensor"
          affine : true
          running_mean : DoubleTensor - size: 128
          bias : DoubleTensor - size: 128
          weight : DoubleTensor - size: 128
          train : false
        }
      6 : 
        {
          inplace : false
          threshold : 0
          _type : "torch.DoubleTensor"
          output : DoubleTensor - empty
          gradInput : DoubleTensor - empty
          train : false
          val : 0
        }
    }
    train	false	
    View Code

    注意:此处有一个module和一个modules,具体不太明白。

    step11. 可通过net.modules[5].module.modules[1].modules进一步查看该层的情况:

    1	nn.SpatialConvolution(64 -> 96, 1x1)
    2	nn.SpatialBatchNormalization
    3	nn.ReLU
    4	nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1)
    5	nn.SpatialBatchNormalization
    6	nn.ReLU

    可见,该层包括1*1conv,BatchNorm,ReLU,3*3conv,BatchNorm,Relu这些。

    step12. 若要查看step11中的3*3卷基层信息,可使用如下索引:

    net.modules[5].module.modules[1].modules[4]

    结果如下:

    dH	1	
    dW	1	
    nInputPlane	96	
    output userdata  size:  	
    kH	3	
    train	false	
    gradBias userdata  size:  128 	
    padH	1	
    bias userdata  size:  128 	
    weight userdata  size:  128 96 3 3 	
    _type	torch.DoubleTensor	
    gradWeight userdata  size:  128 96 3 3 	
    padW	1	
    nOutputPlane	128	
    kW	3	
    gradInput userdata  size: 
    View Code

    step13. 到了step12,已经索引到了step1中网络的最深层。网络中每层均有input,output等。

    step14. 对于net.modules[5]的Inception层,net.modules[5].output的结果和net.modules[5].module.output的结果是一样的,如(为方便显示,只显示了一小部分。如果输出net.modules[5].output,可能会有很多全为0的):

    local imgBatch = torch.rand(1,3,128,128)
    local infer = net:forward(imgBatch)
    
    print(net.modules[5].output[1][2][3])
    print(net.modules[5].module.output[1][2][3])

    结果为:

    0.01 *
     2.7396
     2.9070
     3.1895
     1.5040
     1.9784
     4.0125
     3.2874
     3.3137
     2.1326
     2.3930
     2.8170
     3.5226
     2.3162
     2.7308
     2.8511
     2.5278
     3.3325
     3.0819
     3.2826
     3.5363
     2.5749
     2.8816
     2.2393
     2.4765
     2.4803
     3.2553
     3.0837
     3.1197
     2.4632
     1.5145
     3.7101
     2.1888
    [torch.DoubleTensor of size 32]
    
    0.01 *
     2.7396
     2.9070
     3.1895
     1.5040
     1.9784
     4.0125
     3.2874
     3.3137
     2.1326
     2.3930
     2.8170
     3.5226
     2.3162
     2.7308
     2.8511
     2.5278
     3.3325
     3.0819
     3.2826
     3.5363
     2.5749
     2.8816
     2.2393
     2.4765
     2.4803
     3.2553
     3.0837
     3.1197
     2.4632
     1.5145
     3.7101
     2.1888
    [torch.DoubleTensor of size 32]
    View Code
  • 相关阅读:
    使用IDEA模拟git命令使用的常见场景
    解决 No converter found for return value of type: class java.util.ArrayList
    Connections could not be acquired from the underlying database! ### The error may exist in mapper/BookMapper.xml
    There is no PasswordEncoder mapped for the id "null"
    The server time zone value '�й���׼ʱ��' is unrecognized or represents more than one time zone
    MySQL错误:2003-Can't connect to MySQL server on 'localhost'(10061 "unknown error")
    镜像源
    读书笔记 Week5 2018-4-5
    [第五周课后作业] 软件创新分析
    C#入门学习笔记
  • 原文地址:https://www.cnblogs.com/darkknightzh/p/6065526.html
Copyright © 2020-2023  润新知