• python运算学习之Numpy ------ 数组操作:连接数组、拆分数组 、广播机制、结构化数组、文件贮存与读写、np.where、数组去重


    数组的连接:

     1 # 连接数组
     2 A = np.zeros((3, 4))
     3 B = np.ones_like(A)
     4 print(A, "
    -------分割符--------
    ", B)
     5 print("np.vstack的效果:
    ", np.vstack((A, B)))  # 这是多维数组按列拼接,如果A的shape是(3,4,5),拼接之后为(6,4,5)
     6 print("np.hstack的效果:
    ", np.hstack((A, B)))  # 这是多维数组按行拼接,如果A的shape是(3,4,5),拼接之后为(3,8,5)
     7 a = np.array([1, 1.2, 1.3])
     8 b = np.array([2, 2.2, 2.3])
     9 c = np.array([3, 3.2, 3.3])
    10 print("np.column_stack的效果:
    ", np.column_stack((A, B)))
    11 print("np.row_stack的效果:
    ", np.row_stack((A, B)))
    12 print("np.column_stack的效果:
    ", np.column_stack((a, b, c)))
    13 print("np.row_stack的效果:
    ", np.row_stack((a, b, c)))
    14 Out[1]:
    15 [[0. 0. 0. 0.]
    16  [0. 0. 0. 0.]
    17  [0. 0. 0. 0.]] 
    18 -------分割符--------
    19  [[1. 1. 1. 1.]
    20   [1. 1. 1. 1.]
    21   [1. 1. 1. 1.]]
    22 np.vstack的效果:
    23  [[0. 0. 0. 0.]
    24   [0. 0. 0. 0.]
    25   [0. 0. 0. 0.]
    26   [1. 1. 1. 1.]
    27   [1. 1. 1. 1.]
    28   [1. 1. 1. 1.]]
    29 np.hstack的效果:
    30  [[0. 0. 0. 0. 1. 1. 1. 1.]
    31   [0. 0. 0. 0. 1. 1. 1. 1.]
    32   [0. 0. 0. 0. 1. 1. 1. 1.]]
    33 np.column_stack的效果:
    34  [[0. 0. 0. 0. 1. 1. 1. 1.]
    35   [0. 0. 0. 0. 1. 1. 1. 1.]
    36   [0. 0. 0. 0. 1. 1. 1. 1.]]
    37 np.row_stack的效果:
    38  [[0. 0. 0. 0.]
    39   [0. 0. 0. 0.]
    40   [0. 0. 0. 0.]
    41   [1. 1. 1. 1.]
    42   [1. 1. 1. 1.]
    43   [1. 1. 1. 1.]]
    44 np.column_stack的效果:
    45  [[1.  2.  3. ]
    46   [1.2 2.2 3.2]
    47   [1.3 2.3 3.3]]
    48 np.row_stack的效果:
    49  [[1.  1.2 1.3]
    50   [2.  2.2 2.3]
    51   [3.  3.2 3.3]]

    拆分数组:

     1 A = np.arange(0, 12).reshape(2, 6)
     2 print("二维数组A:
    ", A)
     3 [B, C, D] = np.hsplit(A, 3)  # hsplit(ary, indices_or_sections), np.hsplit(A, 3)为默认按列均分数组
     4 print(B, "
    --------*---------
    ", C, "
    ")
     5 [E, F] = np.vsplit(A, 2)  # 默认按行均分数组
     6 print(E, "
    --------*---------
    ", F, "
    ")
     7 [A1, A2, A3] = np.split(A, [1, 3], axis=1)  # axis=1按列切分,axis=0按行切分
     8 print(A1, "
    --------*---------
    ", A2, "
    ")
     9 Out[2]:
    10 二维数组A:
    11  [[ 0  1  2  3  4  5]
    12   [ 6  7  8  9 10 11]]
    13  [[0 1]
    14   [6 7]] 
    15 --------*---------
    16  [[2 3]
    17   [8 9]] 
    18 
    19  [[0 1 2 3 4 5]] 
    20 --------*---------
    21  [[ 6  7  8  9 10 11]] 
    22 
    23  [[0]
    24   [6]] 
    25 --------*---------
    26  [[1 2]
    27   [7 8]]

    数组的广播机制:

     1 A = np.arange(0, 16).reshape(4, 4)
     2 b = np.array([1.2, 2.3, 3, 4])
     3 print(A + b)
     4 m = np.arange(6).reshape((3, 2, 1))
     5 n = np.arange(6).reshape((3, 1, 2))
     6 print("----*----
    ", m, "
    ----*----
    ", n)
     7 print("m + n 的广播:
    ", m + n)
     8 Out[3]:
     9 [[ 1.2  3.3  5.   7. ]
    10  [ 5.2  7.3  9.  11. ]
    11  [ 9.2 11.3 13.  15. ]
    12  [13.2 15.3 17.  19. ]]
    13 ----*----
    14  [[[0]
    15   [1]]
    16 
    17  [[2]
    18   [3]]
    19 
    20  [[4]
    21   [5]]] 
    22 ----*----
    23  [[[0 1]]
    24 
    25   [[2 3]]
    26 
    27   [[4 5]]]
    28 m + n 的广播:
    29  [[[ 0  1]
    30    [ 1  2]]
    31 
    32   [[ 4  5]
    33    [ 5  6]]
    34 
    35   [[ 8  9]
    36    [ 9 10]]]

       示意图如下:

      

    结构化数组:

     1 structure_array = np.array([(1, 'First', 0.5, 1+2j), (2, 'Second', 1.3, 2-2j), (3, 'Third', 0.8, 1+3j)])
     2 print(structure_array)
     3 structure_array_1 = np.array([(1, 'First', 0.5, 1+2j), (2, 'Second', 1.3, 2-2j), (3, 'Third', 0.8, 1+3j)],
     4                              dtype=[('id', '<i2'), ('position', 'S6'), ('value', 'f4'), ('complex', '<c8')])
     5 print(structure_array_1)
     6 print(structure_array_1['id'])
     7 print(structure_array_1['position'])
     8 Out[4]:
     9 [['1' 'First' '0.5' '(1+2j)']
    10  ['2' 'Second' '1.3' '(2-2j)']
    11  ['3' 'Third' '0.8' '(1+3j)']]
    12 [(1, b'First', 0.5, 1.+2.j) (2, b'Second', 1.3, 2.-2.j)
    13  (3, b'Third', 0.8, 1.+3.j)]
    14 [1 2 3]
    15 [b'First' b'Second' b'Third']

     文件贮存与读写:

     1 A = np.arange(12).reshape(3, 4)
     2 np.save('save_data', A)
     3 load_data = np.load('save_data.npy')
     4 print("Numpy默认保存的格式:
    ", load_data)
     5 # 保存为csv格式
     6 # savetxt(fname,X,fmt='%.18e',delimiter=' ',newline='
    ',header='',footer='',comments='# ', encoding=None)
     7 np.savetxt('data_csv.csv', A)
     8 txt_csv = np.loadtxt('data_csv.csv')
     9 print("Numpy导入csv的格式:
    ", txt_csv)
    10 # np.genfromtxt()导入数据
    11 data = np.genfromtxt('data_csv.csv', delimiter=' ')
    12 print("genfromtxt导入csv的格式:
    ", data)
    13 Out[5]:
    14 Numpy默认保存的格式:
    15  [[ 0  1  2  3]
    16   [ 4  5  6  7]
    17   [ 8  9 10 11]]
    18 Numpy导入csv的格式:
    19  [[ 0.  1.  2.  3.]
    20   [ 4.  5.  6.  7.]
    21   [ 8.  9. 10. 11.]]
    22 genfromtxt导入csv的格式:
    23  [[ 0.  1.  2.  3.]
    24   [ 4.  5.  6.  7.]
    25   [ 8.  9. 10. 11.]]

     np.where:

      np.where实际上是 x if condition else y 的矢量化版本

     1 x = np.array([2, 3, 4, 5, 6])
     2 y = np.array([10, 11, 12, 13, 14])
     3 condition = np.array([True, False, True, True, False])
     4 z = np.where(condition, x, y)
     5 print(z)
     6 data = np.array([[1, 2, np.nan, 4], [np.nan, 2, 3, 4]])
     7 print(np.isnan(data))
     8 print(np.where(np.isnan(data), 0, data))
     9 Out[6]:
    10 [ 2 11  4  5 14]
    11 [[False False  True False]
    12  [ True False False False]]
    13 [[1. 2. 0. 4.]
    14  [0. 2. 3. 4.]]

    数组去重:

    1 print(np.unique([1, 1, 2, 3, 4, 4, 6]))
    2 print(np.unique(np.array([[1, 1, 2, 3, 4, 4, 6], [1, 5, 9, 4, 7, 2, 1]])))
    3 test = np.unique([[1, 1, 2, 3, 4, 4, 6], [1, 5, 9, 4, 7, 2, 1]])
    4 print(test, type(test))
    5 Out[7]:
    6 [1 2 3 4 6]
    7 [1 2 3 4 5 6 7 9]
    8 [1 2 3 4 5 6 7 9] <class 'numpy.ndarray'>
    清澈的爱,只为中国
  • 相关阅读:
    List某字段相同时将其他字段数据相加
    【转】常见面试之机器学习算法思想简单梳理
    【转】R语言知识体系概览
    【转】聊聊HTTPS和SSL/TLS协议
    面试总结【1】
    【转】学习Python的19个资源
    【转】机器学习资料汇总
    Python小爬虫
    【转】python操作mysql数据库
    SQL语法
  • 原文地址:https://www.cnblogs.com/dan-baishucaizi/p/9389338.html
Copyright © 2020-2023  润新知