• flink学习笔记-快速生成Flink项目


    说明:本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程:

    Flink大数据项目实战:http://t.cn/EJtKhaz

     

    1. 快速生成Flink项目

    1.推荐开发工具

    idea+maven+git

    2.推荐开发语言

    Java或者Scala

    https://ci.apache.org/projects/flink/flink-docs-release-1.6/quickstart/java_api_quickstart.html

    3.Flink项目构建步骤

    1)通过maven构建Flink项目

    这里我们选择构建1.6.2版本的Flink项目,打开终端输入如下命令:

    mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java    -DarchetypeVersion=1.6.2

    项目构建过程中需要输入groupIdartifactIdversionpackage

    然后输入y确认

    然后显示Maven项目构建成功

    2)打开IDEA导入Flink 构建的maven项目

    打开IDEA开发工具,点击open选项

    选择刚刚创建的Flink项目

    IDEA打开Flink项目

    2. Flink BatchWordCount

    新建一个batch package

    打开github Flink源码,将批处理WordCount代码copybatch包下。

    https://github.com/apache/flink/tree/master/flink-examples/flink-examples-batch/src/main/java/org/apache/flink/examples/java/wordcount

    打开批处理WordCount代码:

    右键选择run,运行Flink批处理WordCount,运行结果如下所示:

    3. Flink StreamWordCount

    同样,流处理我们也单独创建一个包stream

    打开github Flink源码,将流处理WordCount代码copystream包下。

    https://github.com/apache/flink/tree/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples/wordcount

    打开流处理WordCount代码:

    右键选择run,运行Flink流处理WordCount,运行结果如下所示:

    3Flink核心概念与编程模型

    1. Flink分层架构

    1.1 Flink生态之核心组件栈

    大家回顾一下Flink生态圈中的核心组件栈即可,前面已经详细讲过,这里就不再赘叙。

    1.2 Flink分层架构

    Flink一共分为四个层级,具体如下图所示:

    Flink 最下面的一层APIStateful Stream Processing,它是Flink最底层的API,控制更灵活但一般很少使用。然后上面一层就是Flink Core(核心)API,它包含DataStreamDataSet API,应用层的用户经常使用 Core API。然后再上面一层就是 Table API,它相当于在Core API中可以定义数据的Table结构,可以做table操作。最上面一层就是SQL 操作,用户可以直接使用SQL语句对数据处理,更简单更方便。

    注意:越底层的API越灵活,但越复杂。越上层的API越轻便,但灵活性差。

    1. Stateful Stream Processing

    a)它位于最底层,是Core API 的底层实现。

    b)它是嵌入到Stream流里面的处理函数(processFunction)。

    c)当Core API满足不了用户需求,可以利用低阶API构建一些新的组件或者算子。

    d)它虽然灵活性高,但开发比较复杂,需要具备一定的编码能力。

    1. Core API

    a) DataSet API 是批处理API,处理有限的数据集。

    b) DataStream API是流处理API,处理无限的数据集。

    1. Table API & SQL

    aSQL 构建在Table 之上,都需要构建Table 环境。

    b)不同的类型的Table 构建不同的Table 环境中。

    cTable 可以与DataStream或者DataSet进行相互转换。

    dStreaming SQL不同于存储的SQL,最终会转化为流式执行计划。

    1.3Flink DataFlow

    Flink DataFlow基本套路:先创建Data Source读取数据,然后对数据进行转化操作,然后创建DataSink对数据输出。

    结合代码和示意图理解DataFlow

    Flink DataFlow 基本套路如下所示:

    步骤1:构建计算环境(决定采用哪种计算执行方式)

    步骤2:创建Source(可以多个数据源)

    步骤3:对数据进行不同方式的转换(提供了丰富的算子)

    步骤4:对结果的数据进行Sink(可以输出到多个地方)

    并行化DataFlow

    从上图可以看出Source的并行度为2,它们可以并行运行在不同的节点上。Map的并行度也为2source读取数据后做Stream Partition操作,source1将数据交给map1source2将数据交给map2keyBy(或者window等)的并行度为2map处理后的数据需要经过shuffle操作,然后交给keyBy进行分组统计。Sink的并行度为1keyBy最后分组统计后的数据交给sink,将数据进行输出操作。

    算子间数据传递模式

    从上图可以看出,Flink算子间的数据传递模式大概分为两种:

    1.One-to-one streams:保持元素的分区和顺序,比如数据做map操作。

    2.Redistributing streams: 它会改变流的分区,重新分区策略取决于使用的算子

    keyBy() (re-partitions by hashing the key) :根据hash key对数据重新分区。

    broadcast():即为广播操作,比如map1100条数据,发送给keyBy1100条数据,发给keyBy2也是100条数据。

    rebalance() (which re-partitions randomly):即随机打散,数据随机分区发送给下游操作。

    2. Windows

    前面我们已经了解了FlinkStream流处理和Batch批处理,那么我们这里讲的Windows操作是对一段数据进行操作,它可以按照固定数据量进行Windows操作,也可以按照固定时间进行windows操作,它是Stream 流处理所特有的窗口操作。

    Flink Windows操作的类型大概分为以下几类:

    1. Count Windows

    顾名思义,是按照Events的数量进行操作,比如每3Event做一次windows操作。

    1. Time Windows

    基于时间长度进行Windows操作

    a) Tumbling Windows:即翻滚窗口,不会重叠,比如每隔3s操作一次。

    b) Sliding Windows:即滑动窗口,有重叠,比如窗口大小为3s,每次向前滑动1s

    c) Session Windows:类似于Web编程里的Session,以不活动间隙作为窗口进行操作,比如每10s内没有活动,就会做一次Windows操作。

    1. 自定义Windows

    Flink内置的windows不能满足用户的需求,我们可以自定义Windows操作。

  • 相关阅读:
    scala
    数据结构(01)
    基本算法(07)
    基本算法(06)
    基本算法(05)
    git pull文件时和本地文件冲突的问题
    获取两个日期之间的日期形成一个集合
    lombok的简单介绍(2)
    springboot启动报错
    逆向工程的创建
  • 原文地址:https://www.cnblogs.com/dajiangtai/p/10595402.html
Copyright © 2020-2023  润新知