一、避免在循环条件中使用复杂表达式
在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。
例子:
更正:
二、为'vectors' 和 'hashtables'定义初始大小
jvm为vector扩充大小的时候需要重新创建一个更大的数组,将原原先数组中的内容复制过来,最后,原先的数组再被回收。可见vector容量的扩大是一个颇费时间的事。
通常,默认的10个元素大小是不够的。你最好能准确的估计你所需要的最佳大小。
例子:
更正:
自己设定初始大小。
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3 pp.55 – 57
三、在finally块中关闭stream
程序中使用到的资源应当被释放,以避免资源泄漏。这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。
例子:
更正:
在最后一个catch后添加一个finally块
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.77-79
四、使用'system.arraycopy ()'代替通过来循环复制数组
'system.arraycopy ()' 要比通过循环来复制数组快的多。
例子:
更正:
参考资料:
http://www.cs.cmu.edu/~jch/java/speed.html
五、让访问实例内变量的getter/setter方法变成”final”
简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined”
例子:
更正:
参考资料:
warren n. and bishop p. (1999), "java in practice", p. 4-5
addison-wesley, isbn 0-201-36065-9
六、避免不需要的instanceof操作
如果左边的对象的静态类型等于右边的,instanceof表达式返回永远为true。
例子:
更正:
删掉不需要的instanceof操作。
七、避免不需要的造型操作
所有的类都是直接或者间接继承自object。同样,所有的子类也都隐含的“等于”其父类。那么,由子类造型至父类的操作就是不必要的了。
例子:
更正:
参考资料:
nigel warren, philip bishop: "java in practice - design styles and idioms
for effective java". addison-wesley, 1999. pp.22-23
八、如果只是查找单个字符的话,用charat()代替startswith()
用一个字符作为参数调用startswith()也会工作的很好,但从性能角度上来看,调用用string api无疑是错误的!
例子:
更正
将'startswith()' 替换成'charat()'.
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3
九、使用移位操作来代替'a / b'操作
"/"是一个很“昂贵”的操作,使用移位操作将会更快更有效。
例子:
更正:
十、使用移位操作代替'a * b'
同上。
[i]但我个人认为,除非是在一个非常大的循环内,性能非常重要,而且你很清楚你自己在做什么,方可使用这种方法。否则提高性能所带来的程序晚读性的降低将是不合算的。
例子:
更正:
十一、在字符串相加的时候,使用 ' ' 代替 " ",如果该字符串只有一个字符的话
例子:
更正:
将一个字符的字符串替换成' '
十二、不要在循环中调用synchronized(同步)方法
方法的同步需要消耗相当大的资料,在一个循环中调用它绝对不是一个好主意。
例子:
更正:
不要在循环体中调用同步方法,如果必须同步的话,推荐以下方式:
十三、将try/catch块移出循环
把try/catch块放入循环体内,会极大的影响性能,如果编译jit被关闭或者你所使用的是一个不带jit的jvm,性能会将下降21%之多!
例子:
更正:
将try/catch块移出循环
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.81 – 83
十四、对于boolean值,避免不必要的等式判断
将一个boolean值与一个true比较是一个恒等操作(直接返回该boolean变量的值). 移走对于boolean的不必要操作至少会带来2个好处:
1)代码执行的更快 (生成的字节码少了5个字节);
2)代码也会更加干净 。
例子:
更正:
十五、对于常量字符串,用'string' 代替 'stringbuffer'
常量字符串并不需要动态改变长度。
例子:
更正:
把stringbuffer换成string,如果确定这个string不会再变的话,这将会减少运行开销提高性能。
十六、用'stringtokenizer' 代替 'indexof()' 和'substring()'
字符串的分析在很多应用中都是常见的。使用indexof()和substring()来分析字符串容易导致 stringindexoutofboundsexception。而使用stringtokenizer类来分析字符串则会容易一些,效率也会高一些。
例子:
参考资料:
graig larman, rhett guthrie: "java 2 performance and idiom guide"
prentice hall ptr, isbn: 0-13-014260-3 pp. 282 – 283
十七、使用条件操作符替代"if (cond) return; else return;" 结构
条件操作符更加的简捷
例子:
更正:
十八、使用条件操作符代替"if (cond) a = b; else a = c;" 结构
例子:
更正:
十九、不要在循环体中实例化变量
在循环体中实例化临时变量将会增加内存消耗
例子:
更正:
在循环体外定义变量,并反复使用
二十、确定 stringbuffer的容量
stringbuffer的构造器会创建一个默认大小(通常是16)的字符数组。在使用中,如果超出这个大小,就会重新分配内存,创建一个更大的数组,并将原先的数组复制过来,再丢弃旧的数组。在大多数情况下,你可以在创建stringbuffer的时候指定大小,这样就避免了在容量不够的时候自动增长,以提高性能。
例子:
更正:
为stringbuffer提供寝大小。
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3 p.30 – 31
二十一、尽可能的使用栈变量
如果一个变量需要经常访问,那么你就需要考虑这个变量的作用域了。static? local?还是实例变量?访问静态变量和实例变量将会比访问局部变量多耗费2-3个时钟周期。
例子:
更正:
如果可能,请使用局部变量作为你经常访问的变量。
你可以按下面的方法来修改getsum()方法:
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.122 – 125
二十二、不要总是使用取反操作符(!)
取反操作符(!)降低程序的可读性,所以不要总是使用。
例子:
更正:
如果可能不要使用取反操作符(!)
二十三、与一个接口 进行instanceof操作
基于接口的设计通常是件好事,因为它允许有不同的实现,而又保持灵活。只要可能,对一个对象进行instanceof操作,以判断它是否某一接口要比是否某一个类要快。
例子:
在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快。
例子:
import java.util.vector;
class cel {
void method (vector vector) {
for (int i = 0; i < vector.size (); i++) // violation
; // ...
}
}
更正:
class cel_fixed {
void method (vector vector) {
int size = vector.size ()
for (int i = 0; i < size; i++)
; // ...
}
}
二、为'vectors' 和 'hashtables'定义初始大小
jvm为vector扩充大小的时候需要重新创建一个更大的数组,将原原先数组中的内容复制过来,最后,原先的数组再被回收。可见vector容量的扩大是一个颇费时间的事。
通常,默认的10个元素大小是不够的。你最好能准确的估计你所需要的最佳大小。
例子:
import java.util.vector;
public class dic {
public void addobjects (object[] o) {
// if length > 10, vector needs to expand
for (int i = 0; i< o.length;i++) {
v.add(o); // capacity before it can add more elements.
}
}
public vector v = new vector(); // no initialcapacity.
}
更正:
自己设定初始大小。
public vector v = new vector(20);
public hashtable hash = new hashtable(10);
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3 pp.55 – 57
三、在finally块中关闭stream
程序中使用到的资源应当被释放,以避免资源泄漏。这最好在finally块中去做。不管程序执行的结果如何,finally块总是会执行的,以确保资源的正确关闭。
例子:
import java.io.*;
public class cs {
public static void main (string args[]) {
cs cs = new cs ();
cs.method ();
}
public void method () {
try {
fileinputstream fis = new fileinputstream ("cs.java");
int count = 0;
while (fis.read () != -1)
count++;
system.out.println (count);
fis.close ();
} catch (filenotfoundexception e1) {
} catch (ioexception e2) {
}
}
}
更正:
在最后一个catch后添加一个finally块
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.77-79
四、使用'system.arraycopy ()'代替通过来循环复制数组
'system.arraycopy ()' 要比通过循环来复制数组快的多。
例子:
public class irb
{
void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {
array1 [i] = i;
}
int[] array2 = new int [100];
for (int i = 0; i < array2.length; i++) {
array2 [i] = array1 [i]; // violation
}
}
}
更正:
public class irb
{
void method () {
int[] array1 = new int [100];
for (int i = 0; i < array1.length; i++) {
array1 [i] = i;
}
int[] array2 = new int [100];
system.arraycopy(array1, 0, array2, 0, 100);
}
}
参考资料:
http://www.cs.cmu.edu/~jch/java/speed.html
五、让访问实例内变量的getter/setter方法变成”final”
简单的getter/setter方法应该被置成final,这会告诉编译器,这个方法不会被重载,所以,可以变成”inlined”
例子:
class maf {
public void setsize (int size) {
_size = size;
}
private int _size;
}
更正:
class daf_fixed {
final public void setsize (int size) {
_size = size;
}
private int _size;
}
参考资料:
warren n. and bishop p. (1999), "java in practice", p. 4-5
addison-wesley, isbn 0-201-36065-9
六、避免不需要的instanceof操作
如果左边的对象的静态类型等于右边的,instanceof表达式返回永远为true。
例子:
public class uiso {
public uiso () {}
}
class dog extends uiso {
void method (dog dog, uiso u) {
dog d = dog;
if (d instanceof uiso) // always true.
system.out.println("dog is a uiso");
uiso uiso = u;
if (uiso instanceof object) // always true.
system.out.println("uiso is an object");
}
}
更正:
删掉不需要的instanceof操作。
class dog extends uiso {
void method () {
dog d;
system.out.println ("dog is an uiso");
system.out.println ("uiso is an uiso");
}
}
七、避免不需要的造型操作
所有的类都是直接或者间接继承自object。同样,所有的子类也都隐含的“等于”其父类。那么,由子类造型至父类的操作就是不必要的了。
例子:
class unc {
string _id = "unc";
}
class dog extends unc {
void method () {
dog dog = new dog ();
unc animal = (unc)dog; // not necessary.
object o = (object)dog; // not necessary.
}
}
更正:
class dog extends unc {
void method () {
dog dog = new dog();
unc animal = dog;
object o = dog;
}
}
参考资料:
nigel warren, philip bishop: "java in practice - design styles and idioms
for effective java". addison-wesley, 1999. pp.22-23
八、如果只是查找单个字符的话,用charat()代替startswith()
用一个字符作为参数调用startswith()也会工作的很好,但从性能角度上来看,调用用string api无疑是错误的!
例子:
public class pcts {
private void method(string s) {
if (s.startswith("a")) { // violation
// ...
}
}
}
更正
将'startswith()' 替换成'charat()'.
public class pcts {
private void method(string s) {
if ('a' == s.charat(0)) {
// ...
}
}
}
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3
九、使用移位操作来代替'a / b'操作
"/"是一个很“昂贵”的操作,使用移位操作将会更快更有效。
例子:
public class sdiv {
public static final int num = 16;
public void calculate(int a) {
int div = a / 4; // should be replaced with "a >> 2".
int div2 = a / 8; // should be replaced with "a >> 3".
int temp = a / 3;
}
}
更正:
public class sdiv {
public static final int num = 16;
public void calculate(int a) {
int div = a >> 2;
int div2 = a >> 3;
int temp = a / 3; // 不能转换成位移操作
}
}
十、使用移位操作代替'a * b'
同上。
[i]但我个人认为,除非是在一个非常大的循环内,性能非常重要,而且你很清楚你自己在做什么,方可使用这种方法。否则提高性能所带来的程序晚读性的降低将是不合算的。
例子:
public class smul {
public void calculate(int a) {
int mul = a * 4; // should be replaced with "a << 2".
int mul2 = 8 * a; // should be replaced with "a << 3".
int temp = a * 3;
}
}
更正:
package opt;
public class smul {
public void calculate(int a) {
int mul = a << 2;
int mul2 = a << 3;
int temp = a * 3; // 不能转换
}
}
十一、在字符串相加的时候,使用 ' ' 代替 " ",如果该字符串只有一个字符的话
例子:
public class str {
public void method(string s) {
string string = s + "d" // violation.
string = "abc" + "d" // violation.
}
}
更正:
将一个字符的字符串替换成' '
public class str {
public void method(string s) {
string string = s + 'd'
string = "abc" + 'd'
}
}
十二、不要在循环中调用synchronized(同步)方法
方法的同步需要消耗相当大的资料,在一个循环中调用它绝对不是一个好主意。
例子:
import java.util.vector;
public class syn {
public synchronized void method (object o) {
}
private void test () {
for (int i = 0; i < vector.size(); i++) {
method (vector.elementat(i)); // violation
}
}
private vector vector = new vector (5, 5);
}
更正:
不要在循环体中调用同步方法,如果必须同步的话,推荐以下方式:
import java.util.vector;
public class syn {
public void method (object o) {
}
private void test () {
synchronized{//在一个同步块中执行非同步方法
for (int i = 0; i < vector.size(); i++) {
method (vector.elementat(i));
}
}
}
private vector vector = new vector (5, 5);
}
十三、将try/catch块移出循环
把try/catch块放入循环体内,会极大的影响性能,如果编译jit被关闭或者你所使用的是一个不带jit的jvm,性能会将下降21%之多!
例子:
import java.io.fileinputstream;
public class try {
void method (fileinputstream fis) {
for (int i = 0; i < size; i++) {
try { // violation
_sum += fis.read();
} catch (exception e) {}
}
}
private int _sum;
}
更正:
将try/catch块移出循环
void method (fileinputstream fis) {
try {
for (int i = 0; i < size; i++) {
_sum += fis.read();
}
} catch (exception e) {}
}
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.81 – 83
十四、对于boolean值,避免不必要的等式判断
将一个boolean值与一个true比较是一个恒等操作(直接返回该boolean变量的值). 移走对于boolean的不必要操作至少会带来2个好处:
1)代码执行的更快 (生成的字节码少了5个字节);
2)代码也会更加干净 。
例子:
public class ueq
{
boolean method (string string) {
return string.endswith ("a") == true; // violation
}
}
更正:
class ueq_fixed
{
boolean method (string string) {
return string.endswith ("a");
}
}
十五、对于常量字符串,用'string' 代替 'stringbuffer'
常量字符串并不需要动态改变长度。
例子:
public class usc {
string method () {
stringbuffer s = new stringbuffer ("hello");
string t = s + "world!";
return t;
}
}
更正:
把stringbuffer换成string,如果确定这个string不会再变的话,这将会减少运行开销提高性能。
十六、用'stringtokenizer' 代替 'indexof()' 和'substring()'
字符串的分析在很多应用中都是常见的。使用indexof()和substring()来分析字符串容易导致 stringindexoutofboundsexception。而使用stringtokenizer类来分析字符串则会容易一些,效率也会高一些。
例子:
public class ust {
void parsestring(string string) {
int index = 0;
while ((index = string.indexof(".", index)) != -1) {
system.out.println (string.substring(index, string.length()));
}
}
}
参考资料:
graig larman, rhett guthrie: "java 2 performance and idiom guide"
prentice hall ptr, isbn: 0-13-014260-3 pp. 282 – 283
十七、使用条件操作符替代"if (cond) return; else return;" 结构
条件操作符更加的简捷
例子:
public class if {
public int method(boolean isdone) {
if (isdone) {
return 0;
} else {
return 10;
}
}
}
更正:
public class if {
public int method(boolean isdone) {
return (isdone ? 0 : 10);
}
}
十八、使用条件操作符代替"if (cond) a = b; else a = c;" 结构
例子:
public class ifas {
void method(boolean istrue) {
if (istrue) {
_value = 0;
} else {
_value = 1;
}
}
private int _value = 0;
}
更正:
public class ifas {
void method(boolean istrue) {
_value = (istrue ? 0 : 1); // compact expression.
}
private int _value = 0;
}
十九、不要在循环体中实例化变量
在循环体中实例化临时变量将会增加内存消耗
例子:
import java.util.vector;
public class loop {
void method (vector v) {
for (int i=0;i < v.size();i++) {
object o = new object();
o = v.elementat(i);
}
}
}
更正:
在循环体外定义变量,并反复使用
import java.util.vector;
public class loop {
void method (vector v) {
object o;
for (int i=0;i<v.size();i++) {
o = v.elementat(i);
}
}
}
二十、确定 stringbuffer的容量
stringbuffer的构造器会创建一个默认大小(通常是16)的字符数组。在使用中,如果超出这个大小,就会重新分配内存,创建一个更大的数组,并将原先的数组复制过来,再丢弃旧的数组。在大多数情况下,你可以在创建stringbuffer的时候指定大小,这样就避免了在容量不够的时候自动增长,以提高性能。
例子:
public class rsbc {
void method () {
stringbuffer buffer = new stringbuffer(); // violation
buffer.append ("hello");
}
}
更正:
为stringbuffer提供寝大小。
public class rsbc {
void method () {
stringbuffer buffer = new stringbuffer(max);
buffer.append ("hello");
}
private final int max = 100;
}
参考资料:
dov bulka, "java performance and scalability volume 1: server-side programming
techniques" addison wesley, isbn: 0-201-70429-3 p.30 – 31
二十一、尽可能的使用栈变量
如果一个变量需要经常访问,那么你就需要考虑这个变量的作用域了。static? local?还是实例变量?访问静态变量和实例变量将会比访问局部变量多耗费2-3个时钟周期。
例子:
public class usv {
void getsum (int[] values) {
for (int i=0; i < value.length; i++) {
_sum += value[i]; // violation.
}
}
void getsum2 (int[] values) {
for (int i=0; i < value.length; i++) {
_staticsum += value[i];
}
}
private int _sum;
private static int _staticsum;
}
更正:
如果可能,请使用局部变量作为你经常访问的变量。
你可以按下面的方法来修改getsum()方法:
void getsum (int[] values) {
int sum = _sum; // temporary local variable.
for (int i=0; i < value.length; i++) {
sum += value[i];
}
_sum = sum;
}
参考资料:
peter haggar: "practical java - programming language guide".
addison wesley, 2000, pp.122 – 125
二十二、不要总是使用取反操作符(!)
取反操作符(!)降低程序的可读性,所以不要总是使用。
例子:
public class dun {
boolean method (boolean a, boolean b) {
if (!a)
return !a;
else
return !b;
}
}
更正:
如果可能不要使用取反操作符(!)
二十三、与一个接口 进行instanceof操作
基于接口的设计通常是件好事,因为它允许有不同的实现,而又保持灵活。只要可能,对一个对象进行instanceof操作,以判断它是否某一接口要比是否某一个类要快。
例子:
public class insof {
private void method (object o) {
if (o instanceof interfacebase) { } // better
if (o instanceof classbase) { } // worse.
}
}
class classbase {}
interface interfacebase {}
Java性能优化技巧
文章分类:Java编程转载:http://blog.csdn.net/kome2000/archive/2010/04/28/5537591.aspx
[size=small]在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。
1. 尽量使用final修饰符。
带有final修饰符的类是不可派生的。在JAVA核心API中,有许多应用final的例子,例如 java.lang.String。为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有方法都是final的。java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高 50%。
2.尽量重用对象。
特别是String对象的使用中,出现字符串连接情况时应使用StringBuffer代替,由于系统不仅要花时间生成对象,以后可能还需要花时间对这些对象进行垃圾回收和处理。因此生成过多的对象将会给程序的性能带来很大的影响。
3. 尽量使用局部变量。
调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量,实例变量等,都在堆(Heap)中创建,速度较慢。
4.不要重复初始化变量。
默认情况下,调用类的构造函数时,java会把变量初始化成确定的值,所有的对象被设置成null,整数变量设置成0,float和double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键字创建一个对象时,构造函数链中的所有构造函数都会被自动调用。
这里有个注意,给成员变量设置初始值但需要调用其他方法的时候,最好放在一个方法比如initXXX()中,因为直接调用某方法赋值可能会因为类尚未初始化而抛空指针异常,public int state = this.getState();
5.在java+Oracle的应用系统开发中,java中内嵌的SQL语言应尽量使用大写形式,以减少Oracle解析器的解析负担。
6.java编程过程中,进行数据库连接,I/O流操作,在使用完毕后,及时关闭以释放资源。因为对这些大对象的操作会造成系统大的开销。
7.过分的创建对象会消耗系统的大量内存,严重时,会导致内存泄漏,因此,保证过期的对象的及时回收具有重要意义。
JVM的GC并非十分智能,因此建议在对象使用完毕后,手动设置成null。
8.在使用同步机制时,应尽量使用方法同步代替代码块同步。
9.尽量减少对变量的重复计算。
比如
应修改为
10. 采用在需要的时候才开始创建的策略。
例如:
应修改为:
11.慎用异常,异常对性能不利。
抛出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地方法,fillInStackTrace()方法检查栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用栈,因为在处理过程中创建了一个新的对象。
异常只能用于错误处理,不应该用来控制程序流程。
12.不要在循环中使用Try/Catch语句,应把Try/Catch放在循环最外层。
Error是获取系统错误的类,或者说是虚拟机错误的类。不是所有的错误Exception都能获取到的,虚拟机报错 Exception就获取不到,必须用Error获取。
13.通过StringBuffer的构造函数来设定他的初始化容量,可以明显提升性能。
StringBuffer的默认容量为16,当StringBuffer的容量达到最大容量时,她会将自身容量增加到当前的2倍+2,也就是2*n+2。无论何时,只要StringBuffer到达她的最大容量,她就不得不创建一个新的对象数组,然后复制旧的对象数组,这会浪费很多时间。所以给StringBuffer设置一个合理的初始化容量值,是很有必要的!
14.合理使用java.util.Vector。
Vector 与StringBuffer类似,每次扩展容量时,所有现有元素都要赋值到新的存储空间中。Vector的默认存储能力为10个元素,扩容加倍。
vector.add(index,obj) 这个方法可以将元素obj插入到index位置,但index以及之后的元素依次都要向下移动一个位置(将其索引加 1)。 除非必要,否则对性能不利。
同样规则适用于remove(int index)方法,移除此向量中指定位置的元素。将所有后续元素左移(将其索引减 1)。返回此向量中移除的元素。所以删除vector最后一个元素要比删除第1个元素开销低很多。删除所有元素最好用 removeAllElements()方法。
如果要删除vector里的一个元素可以使用 vector.remove(obj);而不必自己检索元素位置,再删除,如int index = indexOf(obj);vector.remove(index);
15.当复制大量数据时,使用 System.arraycopy();
16.代码重构,增加代码的可读性。
17.不用new关键字创建对象的实例。
用 new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用她的clone() 方法。clone()方法不会调用任何类构造函数。
下面是Factory模式的一个典型实现。
改进后的代码使用clone() 方法,
18. 乘除法如果可以使用位移,应尽量使用位移,但最好加上注释,因为位移操作不直观,难于理解。
19.不要将数组声明为:public static final。
20.HaspMap的遍历。
利用散列值取出相应的Entry做比较得到结果,取得entry的值之后直接取key和 value。
21.array(数组)和ArrayList的使用。
array 数组效率最高,但容量固定,无法动态改变,ArrayList容量可以动态增长,但牺牲了效率。
22.单线程应尽量使用 HashMap, ArrayList,除非必要,否则不推荐使用HashTable,Vector,她们使用了同步机制,而降低了性能。
23.StringBuffer,StringBuilder 的区别在于:java.lang.StringBuffer 线程安全的可变字符序列。一个类似于String的字符串缓冲区,但不能修改。StringBuilder与该类相比,通常应该优先使用 StringBuilder类,因为她支持所有相同的操作,但由于她不执行同步,所以速度更快。为了获得更好的性能,在构造StringBuffer或 StringBuilder时应尽量指定她的容量。当然如果不超过16个字符时就不用了。
相同情况下,使用StringBuilder比使用 StringBuffer仅能获得10%~15%的性能提升,但却要冒多线程不安全的风险。综合考虑还是建议使用StringBuffer。
24. 尽量使用基本数据类型代替对象。
25.用简单的数值计算代替复杂的函数计算,比如查表方式解决三角函数问题。
26.使用具体类比使用接口效率高,但结构弹性降低了,但现代IDE都可以解决这个问题。
27.考虑使用静态方法,
如果你没有必要去访问对象的外部,那么就使你的方法成为静态方法。她会被更快地调用,因为她不需要一个虚拟函数导向表。这同事也是一个很好的实践,因为她告诉你如何区分方法的性质,调用这个方法不会改变对象的状态。
28.应尽可能避免使用内在的GET,SET方法。
android编程中,虚方法的调用会产生很多代价,比实例属性查询的代价还要多。我们应该在外包调用的时候才使用get,set方法,但在内部调用的时候,应该直接调用。
29. 避免枚举,浮点数的使用。
30.二维数组比一维数组占用更多的内存空间,大概是10倍计算。
31.SQLite数据库读取整张表的全部数据很快,但有条件的查询就要耗时30-50MS,大家做这方面的时候要注意,尽量少用,尤其是嵌套查找!
[size=small]在JAVA程序中,性能问题的大部分原因并不在于JAVA语言,而是程序本身。养成良好的编码习惯非常重要,能够显著地提升程序性能。
1. 尽量使用final修饰符。
带有final修饰符的类是不可派生的。在JAVA核心API中,有许多应用final的例子,例如 java.lang.String。为String类指定final防止了使用者覆盖length()方法。另外,如果一个类是final的,则该类所有方法都是final的。java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高 50%。
2.尽量重用对象。
特别是String对象的使用中,出现字符串连接情况时应使用StringBuffer代替,由于系统不仅要花时间生成对象,以后可能还需要花时间对这些对象进行垃圾回收和处理。因此生成过多的对象将会给程序的性能带来很大的影响。
3. 尽量使用局部变量。
调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量,实例变量等,都在堆(Heap)中创建,速度较慢。
4.不要重复初始化变量。
默认情况下,调用类的构造函数时,java会把变量初始化成确定的值,所有的对象被设置成null,整数变量设置成0,float和double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键字创建一个对象时,构造函数链中的所有构造函数都会被自动调用。
这里有个注意,给成员变量设置初始值但需要调用其他方法的时候,最好放在一个方法比如initXXX()中,因为直接调用某方法赋值可能会因为类尚未初始化而抛空指针异常,public int state = this.getState();
5.在java+Oracle的应用系统开发中,java中内嵌的SQL语言应尽量使用大写形式,以减少Oracle解析器的解析负担。
6.java编程过程中,进行数据库连接,I/O流操作,在使用完毕后,及时关闭以释放资源。因为对这些大对象的操作会造成系统大的开销。
7.过分的创建对象会消耗系统的大量内存,严重时,会导致内存泄漏,因此,保证过期的对象的及时回收具有重要意义。
JVM的GC并非十分智能,因此建议在对象使用完毕后,手动设置成null。
8.在使用同步机制时,应尽量使用方法同步代替代码块同步。
9.尽量减少对变量的重复计算。
比如
for(int i=0;i<list.size();i++)
应修改为
for(int i=0,len=list.size();i<len;i++)
10. 采用在需要的时候才开始创建的策略。
例如:
String str="abc";
if(i==1){ list.add(str);}
应修改为:
if(i==1){String str="abc"; list.add(str);}
11.慎用异常,异常对性能不利。
抛出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地方法,fillInStackTrace()方法检查栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用栈,因为在处理过程中创建了一个新的对象。
异常只能用于错误处理,不应该用来控制程序流程。
12.不要在循环中使用Try/Catch语句,应把Try/Catch放在循环最外层。
Error是获取系统错误的类,或者说是虚拟机错误的类。不是所有的错误Exception都能获取到的,虚拟机报错 Exception就获取不到,必须用Error获取。
13.通过StringBuffer的构造函数来设定他的初始化容量,可以明显提升性能。
StringBuffer的默认容量为16,当StringBuffer的容量达到最大容量时,她会将自身容量增加到当前的2倍+2,也就是2*n+2。无论何时,只要StringBuffer到达她的最大容量,她就不得不创建一个新的对象数组,然后复制旧的对象数组,这会浪费很多时间。所以给StringBuffer设置一个合理的初始化容量值,是很有必要的!
14.合理使用java.util.Vector。
Vector 与StringBuffer类似,每次扩展容量时,所有现有元素都要赋值到新的存储空间中。Vector的默认存储能力为10个元素,扩容加倍。
vector.add(index,obj) 这个方法可以将元素obj插入到index位置,但index以及之后的元素依次都要向下移动一个位置(将其索引加 1)。 除非必要,否则对性能不利。
同样规则适用于remove(int index)方法,移除此向量中指定位置的元素。将所有后续元素左移(将其索引减 1)。返回此向量中移除的元素。所以删除vector最后一个元素要比删除第1个元素开销低很多。删除所有元素最好用 removeAllElements()方法。
如果要删除vector里的一个元素可以使用 vector.remove(obj);而不必自己检索元素位置,再删除,如int index = indexOf(obj);vector.remove(index);
15.当复制大量数据时,使用 System.arraycopy();
16.代码重构,增加代码的可读性。
17.不用new关键字创建对象的实例。
用 new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用她的clone() 方法。clone()方法不会调用任何类构造函数。
下面是Factory模式的一个典型实现。
public static Credit getNewCredit()
{
return new Credit();
}
改进后的代码使用clone() 方法,
private static Credit BaseCredit = new Credit();
public static Credit getNewCredit()
{
return (Credit)BaseCredit.clone();
}
18. 乘除法如果可以使用位移,应尽量使用位移,但最好加上注释,因为位移操作不直观,难于理解。
19.不要将数组声明为:public static final。
20.HaspMap的遍历。
Map<String, String[]> paraMap = new HashMap<String, String[]>();
for( Entry<String, String[]> entry : paraMap.entrySet() )
{
String appFieldDefId = entry.getKey();
String[] values = entry.getValue();
}
利用散列值取出相应的Entry做比较得到结果,取得entry的值之后直接取key和 value。
21.array(数组)和ArrayList的使用。
array 数组效率最高,但容量固定,无法动态改变,ArrayList容量可以动态增长,但牺牲了效率。
22.单线程应尽量使用 HashMap, ArrayList,除非必要,否则不推荐使用HashTable,Vector,她们使用了同步机制,而降低了性能。
23.StringBuffer,StringBuilder 的区别在于:java.lang.StringBuffer 线程安全的可变字符序列。一个类似于String的字符串缓冲区,但不能修改。StringBuilder与该类相比,通常应该优先使用 StringBuilder类,因为她支持所有相同的操作,但由于她不执行同步,所以速度更快。为了获得更好的性能,在构造StringBuffer或 StringBuilder时应尽量指定她的容量。当然如果不超过16个字符时就不用了。
相同情况下,使用StringBuilder比使用 StringBuffer仅能获得10%~15%的性能提升,但却要冒多线程不安全的风险。综合考虑还是建议使用StringBuffer。
24. 尽量使用基本数据类型代替对象。
25.用简单的数值计算代替复杂的函数计算,比如查表方式解决三角函数问题。
26.使用具体类比使用接口效率高,但结构弹性降低了,但现代IDE都可以解决这个问题。
27.考虑使用静态方法,
如果你没有必要去访问对象的外部,那么就使你的方法成为静态方法。她会被更快地调用,因为她不需要一个虚拟函数导向表。这同事也是一个很好的实践,因为她告诉你如何区分方法的性质,调用这个方法不会改变对象的状态。
28.应尽可能避免使用内在的GET,SET方法。
android编程中,虚方法的调用会产生很多代价,比实例属性查询的代价还要多。我们应该在外包调用的时候才使用get,set方法,但在内部调用的时候,应该直接调用。
29. 避免枚举,浮点数的使用。
30.二维数组比一维数组占用更多的内存空间,大概是10倍计算。
31.SQLite数据库读取整张表的全部数据很快,但有条件的查询就要耗时30-50MS,大家做这方面的时候要注意,尽量少用,尤其是嵌套查找!
数值表达式
1. 奇偶判断
不要使用 i % 2 == 1 来判断是否是奇数,因为i为负奇数时不成立,请使用 i % 2 != 0 来判断是否是奇数,或使用
高效式 (i & 1) != 0来判断。
2. 小数精确计算
上面的计算出的结果不是 0.9,而是一连串的小数。问题在于1.1这个数字不能被精确表示为一个double,因此它被表
示为最接近它的double值,该程序从2中减去的就是这个值,但这个计算的结果并不是最接近0.9的double值。
一般地说,问题在于并不是所有的小数都可以用二进制浮点数精确表示。
二进制浮点对于货币计算是非常不适合的,因为它不可能将1.0表示成10的其他任何负次幂。
解决问题的第一种方式是使用货币的最小单位(分)来表示:
第二种方式是使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用 BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构造,因为在将float或double转换成String时精度已丢失)。
例如new BigDecimal(0.1),
它将返回一个BigDecimal,
也即0.1000000000000000055511151231257827021181583404541015625,
正确使用BigDecimal,程序就可以打印出我们所期
望的结果0.9:
另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。
3. int整数相乘溢出
我们计算一天中的微秒数:
问题在于计算过程中溢出了。这个计算式完全是以int运算来执行的,并且只有在运算完成之后,其结果才被提升为long,而此时已经太迟:计算已经溢出。
解决方法使计算表达式的第一个因子明确为long型,这样可以强制表达式中所有的后续计算都用long运算来完成,这样结果就不会溢出:
4. 负的十六进制与八进制字面常量
“数字字面常量”的类型都是int型,而不管他们是几进制,所以“2147483648”、“0x180000000(十六进制,共33位,所以超过了整数的取值范围)”字面常量是错误的,编译时会报超过int的取值范围了,所以要确定以long来表示“2147483648L”“0x180000000L”。
十进制字面常量只有一个特性,即所有的十进制字面常量都是正数,如果想写一个负的十进制,则需要在正的十进制
字面常量前加上“-”即可。
十六进制或八进制字面常量可就不一定是正数或负数,是正还是负,则要根据当前情况看:如果十六进制和八进制字
面常量的最高位被设置成了1,那么它们就是负数:
从上面可以看出,十六进制的字面常量表示的是int型,如果超过32位,则需要在后面加“L”,否则编译过不过。如果为32,则为负int正数,超过32位,则为long型,但需明确指定为long。
结果为什么不是0x1cafebabe?该程序执行的加法是一个混合类型的计算:左操作数是long型,而右操作数是int类型。为了执行该计算,Java将int类型的数值用拓宽原生类型转换提升为long类型,然后对两个long类型数值相加。因为int是有符号的整数类型,所以这个转换执行的是符号扩展。
这个加法的右操作数0xcafebabe为32位,将被提升为long类型的数值0xffffffffcafebabeL,之后这个数值加上了左操
作0x100000000L。当视为int类型时,经过符号扩展之后的右操作数的高32位是-1,而左操作数的第32位是1,两个数
值相加得到了0:
0x 0xffffffffcafebabeL
+0x 0000000100000000L
-----------------------------
0x 00000000cafebabeL
如果要得到正确的结果0x1cafebabe,则需在第二个操作数组后加上“L”明确看作是正的long型即可,此时相加时拓
展符号位就为0:
5. 窄数字类型提升至宽类型时使用符号位扩展还是零扩展
结果为什么是65535而不是-1?
窄的整型转换成较宽的整型时符号扩展规则:如果最初的数值类型是有符号的,那么就执行符号扩展(即如果符号位
为1,则扩展为1,如果为零,则扩展为0);如果它是char,那么不管它将要被提升成什么类型,都执行零扩展。
了解上面的规则后,我们再来看看迷题:因为byte是有符号的类型,所以在将byte数值-1(二进制为:11111111)提
升到char时,会发生符号位扩展,又符号位为1,所以就补8个1,最后为16个1;然后从char到int的提升时,由于是
char型提升到其他类型,所以采用零扩展而不是符号扩展,结果int数值就成了65535。
如果将一个char数值c转型为一个宽度更宽的类型时,只是以零来扩展,但如果清晰表达以零扩展的意图,则可以考虑
使用一个位掩码:
如果将一个char数值c转型为一个宽度更宽的整型,并且希望有符号扩展,那么就先将char转型为一个short,它与
char上个具有同样的宽度,但是它是有符号的:
如果将一个byte数值b转型为一个char,并且不希望有符号扩展,那么必须使用一个位掩码来限制它:
[size=medium]
6. ((byte)0x90 == 0x90)?
[/size]
答案是不等的,尽管外表看起来是成立的,但是它却等于false。为了比较byte数值(byte)0x90和int数值0x90,Java
通过拓宽原生类型将byte提升为int,然后比较这两个int数值。因为byte是一个有符号类型,所以这个转换执行的是
符号扩展,将负的byte数值提升为了在数字上相等的int值(10010000111111111111111111111111 10010000)。在本例中,该转换将(byte)0x90提升为int数值-112,它不等于int数值的0x90,即+144。
解决办法:使用一个屏蔽码来消除符号扩展的影响,从而将byte转型为int。
7. 三元表达式(?:)
条件表达式结果类型的规则:
(1) 如果第二个和第三个操作数具有相同的类型,那么它就是条件表达式的类型。
(2) 如果一个操作的类型是T,T表示byte、short或char,而另一个操作数是一个int类型的“字面常量”,并且
它的值可以用类型T表示,那条件表达式的类型就是T。
(3) 否则,将对操作数类型进行提升,而条件表达式的类型就是第二个和第三个操作被提升之后的类型。
现来使用以上规则解上面的迷题,第一个表达式符合第二条规则:一个操作数的类型是char,另一个的类型是字面常
量为0的int型,但0可以表示成char,所以最终返回类型以char类型为准;第二个表达式符合第三条规则:因为i为int
型变量,而x又为char型变量,所以会先将x提升至int型,所以最后的结果类型为int型,但如果将i定义成final时,
则返回结果类型为char,则此时符合第二条规则,因为final类型的变量在编译时就使用“字面常量0”来替换三元表
达式了:
在JDK1.4版本或之前,条件操作符 ?: 中,当第二个和延续三个操作数是引用类型时,条件操作符要求它们其中一个
必须是另一个的子类型,那怕它们有同一个父类也不行:
在5.0或以上版本中,条件操作符在延续二个和第三个操作数是引用类型时总是合法的。其结果类型是这两种类型的最
小公共超类。公共超类总是存在的,因为Object是每一个对象类型的超类型,上面的最小公共超类是T,所以能编译。
1. 奇偶判断
不要使用 i % 2 == 1 来判断是否是奇数,因为i为负奇数时不成立,请使用 i % 2 != 0 来判断是否是奇数,或使用
高效式 (i & 1) != 0来判断。
2. 小数精确计算
System.out.println(2.00 -1.10);//0.8999999999999999
上面的计算出的结果不是 0.9,而是一连串的小数。问题在于1.1这个数字不能被精确表示为一个double,因此它被表
示为最接近它的double值,该程序从2中减去的就是这个值,但这个计算的结果并不是最接近0.9的double值。
一般地说,问题在于并不是所有的小数都可以用二进制浮点数精确表示。
二进制浮点对于货币计算是非常不适合的,因为它不可能将1.0表示成10的其他任何负次幂。
解决问题的第一种方式是使用货币的最小单位(分)来表示:
System.out.println(200-110);//90
第二种方式是使用BigDecimal,但一定要用BigDecimal(String)构造器,而千万不要用 BigDecimal(double)来构造(也不能将float或double型转换成String再来使用BigDecimal(String)来构造,因为在将float或double转换成String时精度已丢失)。
例如new BigDecimal(0.1),
它将返回一个BigDecimal,
也即0.1000000000000000055511151231257827021181583404541015625,
正确使用BigDecimal,程序就可以打印出我们所期
望的结果0.9:
System.out.println(new BigDecimal("2.0").subtract(new BigDecimal("1.10")));// 0.9
另外,如果要比较两个浮点数的大小,要使用BigDecimal的compareTo方法。
3. int整数相乘溢出
我们计算一天中的微秒数:
long microsPerDay = 24 * 60 * 60 * 1000 * 1000;// 正确结果应为:86400000000
System.out.println(microsPerDay);// 实际上为:500654080
问题在于计算过程中溢出了。这个计算式完全是以int运算来执行的,并且只有在运算完成之后,其结果才被提升为long,而此时已经太迟:计算已经溢出。
解决方法使计算表达式的第一个因子明确为long型,这样可以强制表达式中所有的后续计算都用long运算来完成,这样结果就不会溢出:
long microsPerDay = 24L * 60 * 60 * 1000 * 1000;
4. 负的十六进制与八进制字面常量
“数字字面常量”的类型都是int型,而不管他们是几进制,所以“2147483648”、“0x180000000(十六进制,共33位,所以超过了整数的取值范围)”字面常量是错误的,编译时会报超过int的取值范围了,所以要确定以long来表示“2147483648L”“0x180000000L”。
十进制字面常量只有一个特性,即所有的十进制字面常量都是正数,如果想写一个负的十进制,则需要在正的十进制
字面常量前加上“-”即可。
十六进制或八进制字面常量可就不一定是正数或负数,是正还是负,则要根据当前情况看:如果十六进制和八进制字
面常量的最高位被设置成了1,那么它们就是负数:
System.out.println(0x80);//128
//0x81看作是int型,最高位(第32位)为0,所以是正数
System.out.println(0x81);//129
System.out.println(0x8001);//32769
System.out.println(0x70000001);//1879048193
//字面量0x80000001为int型,最高位(第32位)为1,所以是负数
System.out.println(0x80000001);//-2147483647
//字面量0x80000001L强制转为long型,最高位(第64位)为0,所以是正数
System.out.println(0x80000001L);//2147483649
//最小int型
System.out.println(0x80000000);//-2147483648
//只要超过32位,就需要在字面常量后加L强转long,否则编译时出错
System.out.println(0x8000000000000000L);//-9223372036854775808
从上面可以看出,十六进制的字面常量表示的是int型,如果超过32位,则需要在后面加“L”,否则编译过不过。如果为32,则为负int正数,超过32位,则为long型,但需明确指定为long。
System.out.println(Long.toHexString(0x100000000L + 0xcafebabe));// cafebabe
结果为什么不是0x1cafebabe?该程序执行的加法是一个混合类型的计算:左操作数是long型,而右操作数是int类型。为了执行该计算,Java将int类型的数值用拓宽原生类型转换提升为long类型,然后对两个long类型数值相加。因为int是有符号的整数类型,所以这个转换执行的是符号扩展。
这个加法的右操作数0xcafebabe为32位,将被提升为long类型的数值0xffffffffcafebabeL,之后这个数值加上了左操
作0x100000000L。当视为int类型时,经过符号扩展之后的右操作数的高32位是-1,而左操作数的第32位是1,两个数
值相加得到了0:
0x 0xffffffffcafebabeL
+0x 0000000100000000L
-----------------------------
0x 00000000cafebabeL
如果要得到正确的结果0x1cafebabe,则需在第二个操作数组后加上“L”明确看作是正的long型即可,此时相加时拓
展符号位就为0:
System.out.println(Long.toHexString(0x100000000L + 0xcafebabeL));// 1cafebabe
5. 窄数字类型提升至宽类型时使用符号位扩展还是零扩展
System.out.println((int)(char)(byte)-1);// 65535
结果为什么是65535而不是-1?
窄的整型转换成较宽的整型时符号扩展规则:如果最初的数值类型是有符号的,那么就执行符号扩展(即如果符号位
为1,则扩展为1,如果为零,则扩展为0);如果它是char,那么不管它将要被提升成什么类型,都执行零扩展。
了解上面的规则后,我们再来看看迷题:因为byte是有符号的类型,所以在将byte数值-1(二进制为:11111111)提
升到char时,会发生符号位扩展,又符号位为1,所以就补8个1,最后为16个1;然后从char到int的提升时,由于是
char型提升到其他类型,所以采用零扩展而不是符号扩展,结果int数值就成了65535。
如果将一个char数值c转型为一个宽度更宽的类型时,只是以零来扩展,但如果清晰表达以零扩展的意图,则可以考虑
使用一个位掩码:
int i = c & 0xffff;//实质上等同于:int i = c ;
如果将一个char数值c转型为一个宽度更宽的整型,并且希望有符号扩展,那么就先将char转型为一个short,它与
char上个具有同样的宽度,但是它是有符号的:
int i = (short)c;
如果将一个byte数值b转型为一个char,并且不希望有符号扩展,那么必须使用一个位掩码来限制它:
char c = (char)(b & 0xff);// char c = (char) b;为有符号扩展
[size=medium]
6. ((byte)0x90 == 0x90)?
[/size]
答案是不等的,尽管外表看起来是成立的,但是它却等于false。为了比较byte数值(byte)0x90和int数值0x90,Java
通过拓宽原生类型将byte提升为int,然后比较这两个int数值。因为byte是一个有符号类型,所以这个转换执行的是
符号扩展,将负的byte数值提升为了在数字上相等的int值(10010000111111111111111111111111 10010000)。在本例中,该转换将(byte)0x90提升为int数值-112,它不等于int数值的0x90,即+144。
解决办法:使用一个屏蔽码来消除符号扩展的影响,从而将byte转型为int。
((byte)0x90 & 0xff)== 0x90
7. 三元表达式(?:)
char x = 'X';
int i = 0;
System.out.println(true ? x : 0);// X
System.out.println(false ? i : x);// 88
条件表达式结果类型的规则:
(1) 如果第二个和第三个操作数具有相同的类型,那么它就是条件表达式的类型。
(2) 如果一个操作的类型是T,T表示byte、short或char,而另一个操作数是一个int类型的“字面常量”,并且
它的值可以用类型T表示,那条件表达式的类型就是T。
(3) 否则,将对操作数类型进行提升,而条件表达式的类型就是第二个和第三个操作被提升之后的类型。
现来使用以上规则解上面的迷题,第一个表达式符合第二条规则:一个操作数的类型是char,另一个的类型是字面常
量为0的int型,但0可以表示成char,所以最终返回类型以char类型为准;第二个表达式符合第三条规则:因为i为int
型变量,而x又为char型变量,所以会先将x提升至int型,所以最后的结果类型为int型,但如果将i定义成final时,
则返回结果类型为char,则此时符合第二条规则,因为final类型的变量在编译时就使用“字面常量0”来替换三元表
达式了:
final int i = 0;
System.out.println(false ? i : x);// X
在JDK1.4版本或之前,条件操作符 ?: 中,当第二个和延续三个操作数是引用类型时,条件操作符要求它们其中一个
必须是另一个的子类型,那怕它们有同一个父类也不行:
public class T {
public static void main(String[] args) {
System.out.println(f());
}
public static T f() {
// !!1.4不能编译,但1.5可以
// !!return true?new T1():new T2();
return true ? (T) new T1() : new T2();// T1
}
}
class T1 extends T {
public String toString() {
return "T1";
}
}
class T2 extends T {
public String toString() {
return "T2";
}
}
在5.0或以上版本中,条件操作符在延续二个和第三个操作数是引用类型时总是合法的。其结果类型是这两种类型的最
小公共超类。公共超类总是存在的,因为Object是每一个对象类型的超类型,上面的最小公共超类是T,所以能编译。