• 大并发处理解决方案


    随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。

    AD:2013大数据全球技术峰会课程PPT下载

    一个小型的网站,比如个人网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构、性能的要求都很简单,随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。

    大型网站,比如门户网站。在面对大量用户访问、高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器。但是除了这几个方面,还没法根本解决大型网站面临的高负载和高并发问题。

    上面提供的几个解决思路在一定程度上也意味着更大的投入,并且这样的解决思路具备瓶颈,没有很好的扩展性,下面我从低成本、高性能和高扩张性的角度来说说我的一些经验。

    1、HTML静态化

    其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。

    除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。

    同时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。

    2、图片服务器分离

    大家知道,对于Web服务器来说,不管是Apache、IIS还是其他容器,图片是最消耗资源的,于是我们有必要将图片与页面进行分离,这是基本上大型网站都会采用的策略,他们都有独立的图片服务器,甚至很多台图片服务器。这样的架构可以降低提供页面访问请求的服务器系统压力,并且可以保证系统不会因为图片问题而崩溃,在应用服务器和图片服务器上,可以进行不同的配置优化,比如apache在配置ContentType的时候可以尽量少支持,尽可能少的LoadModule,保证更高的系统消耗和执行效率。

    3、数据库集群和库表散列

    大型网站都有复杂的应用,这些应用必须使用数据库,那么在面对大量访问的时候,数据库的瓶颈很快就能显现出来,这时一台数据库将很快无法满足应用,于是我们需要使用数据库集群或者库表散列。

    在数据库集群方面,很多数据库都有自己的解决方案,Oracle、Sybase等都有很好的方案,常用的MySQL提供的Master/Slave也是类似的方案,您使用了什么样的DB,就参考相应的解决方案来实施即可。

    上面提到的数据库集群由于在架构、成本、扩张性方面都会受到所采用DB类型的限制,于是我们需要从应用程序的角度来考虑改善系统架构,库表散列是常用并且最有效的解决方案。我们在应用程序中安装业务和应用或者功能模块将数据库进行分离,不同的模块对应不同的数据库或者表,再按照一定的策略对某个页面或者功能进行更小的数据库散列,比如用户表,按照用户ID进行表散列,这样就能够低成本的提升系统的性能并且有很好的扩展性。sohu的论坛就是采用了这样的架构,将论坛的用户、设置、帖子等信息进行数据库分离,然后对帖子、用户按照板块和ID进行散列数据库和表,最终可以在配置文件中进行简单的配置便能让系统随时增加一台低成本的数据库进来补充系统性能。

    4、缓存

    缓存一词搞技术的都接触过,很多地方用到缓存。网站架构和网站开发中的缓存也是非常重要。这里先讲述最基本的两种缓存。高级和分布式的缓存在后面讲述。 
    架构方面的缓存,对Apache比较熟悉的人都能知道Apache提供了自己的缓存模块,也可以使用外加的Squid模块进行缓存,这两种方式均可以有效的提高Apache的访问响应能力。 
    网站程序开发方面的缓存,Linux上提供的Memory Cache是常用的缓存接口,可以在web开发中使用,比如用Java开发的时候就可以调用MemoryCache对一些数据进行缓存和通讯共享,一些大型社区使用了这样的架构。另外,在使用web语言开发的时候,各种语言基本都有自己的缓存模块和方法,PHP有Pear的Cache模块,Java就更多了,.net不是很熟悉,相信也肯定有。

    5、镜像

    镜像是大型网站常采用的提高性能和数据安全性的方式,镜像的技术可以解决不同网络接入商和地域带来的用户访问速度差异,比如ChinaNet和EduNet之间的差异就促使了很多网站在教育网内搭建镜像站点,数据进行定时更新或者实时更新。在镜像的细节技术方面,这里不阐述太深,有很多专业的现成的解决架构和产品可选。也有廉价的通过软件实现的思路,比如Linux上的rsync等工具。

    6、负载均衡

    负载均衡将是大型网站解决高负荷访问和大量并发请求采用的终极解决办法。

    负载均衡技术发展了多年,有很多专业的服务提供商和产品可以选择,我个人接触过一些解决方法,其中有两个架构可以给大家做参考。

    1)硬件四层交换

    第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。 第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。

    在硬件四层交换产品领域,有一些知名的产品可以选择,比如Alteon、F5等,这些产品很昂贵,但是物有所值,能够提供非常优秀的性能和很灵活的管理能力。Yahoo中国当初接近2000台服务器使用了三四台Alteon就搞定了。

    2)软件四层交换

    大家知道了硬件四层交换机的原理后,基于OSI模型来实现的软件四层交换也就应运而生,这样的解决方案实现的原理一致,不过性能稍差。但是满足一定量的压力还是游刃有余的,有人说软件实现方式其实更灵活,处理能力完全看你配置的熟悉能力。

    软件四层交换我们可以使用Linux上常用的LVS来解决,LVS就是Linux Virtual Server,他提供了基于心跳线heartbeat的实时灾难应对解决方案,提高系统的鲁棒性,同时可供了灵活的虚拟VIP配置和管理功能,可以同时满足多种应用需求,这对于分布式的系统来说必不可少。

    一个典型的使用负载均衡的策略就是,在软件或者硬件四层交换的基础上搭建squid集群,这种思路在很多大型网站包括搜索引擎上被采用,这样的架构低成本、高性能还有很强的扩张性,随时往架构里面增减节点都非常容易。这样的架构我准备空了专门详细整理一下和大家探讨。

    原文链接:http://ligaosong.iteye.com/blog/1544531


    周末参加了@淘宝技术嘉年华 主办的技术沙龙, 感觉收获颇丰,非常感谢淘宝人的分享。这里我把淘宝下单高并发解决方案的个人理解分享一下。我不是淘宝技术人员,本文只是写自己的理解,所以肯定是会有一些出入的。

    AD:2013大数据全球技术峰会课程PPT下载

    周末参加了@淘宝技术嘉年华 主办的技术沙龙, 感觉收获颇丰,非常感谢淘宝人的分享。这里我把淘宝下单高并发解决方案的个人理解分享一下。我不是淘宝技术人员,本文只是写自己的理解,所以肯定是会有一些出入的。

    在session中牧劳为我们介绍了淘宝下单部分的技术方案变迁,我不介绍变迁,而只对现有系统做介绍。

    要优化下单,提高下单的TPS (Transaction per second),我们首先要做的是对下单的逻辑剥离,只保留核心部分,而把附加功能剔除出去。比如说下单要考虑库存量,考虑发短信,要给卖家发旺旺消息通知,要对订单做统计,要做销售额统计等等,这些功能是必要的,但是也是附加的功能,要最大程度提高下单这一步的TPS,就要先不考虑这些东西。

    下单必然会涉及到买家查看订单,和卖家查看收到的订单,修改订单价格等,这是下单的核心。 在下单这个操作中有买家和卖家两个密切关联而有不同的视角。牧劳称为两个不同的维度。据牧劳的介绍下单这一步只有5张表,这5张表涵盖了这两个维度的操作。

    下单是在一个数据库事务中进行的,要提高数据库的事务并发数,最有效的办法是拆分,拆分有两种,一是对库进行拆分,另一种是在同一个库中对表进行拆分。要做拆分首先就要考虑拆分依据的字段,淘宝是根据订单号做拆分的,而下单中有两个维度,买家和卖家,对订单做拆分之后,必须还是可以通过买家,卖家方便的查询着两个维度的数据。该怎么办呢?这里留个疑问,我先介绍淘宝拆分的规模,淘宝将订单表拆分到16个mysql库中,而在每个库中又将订单表横向拆分为64份,相当于将一个表拆分为1024份。拆分之后事务会分散到1024套表中,这必然会很大程序上增加并发的事务处理能力(这儿我说是必然,但是淘宝在使用这种方案之前是要经过压力测试,实际测试出这种方案的TPS之后,才会逐步采用这种方案的)。上面留了一个疑问,经过拆分之后如何保证买家卖家快速的查询其下的订单呢?最好的办法是保证买家,卖家下的订单在一张表中,如何保证呢?淘宝的做法是将买家的id取模后放到订单号中。假定一个订单号是142424594267664;这个订单号对应的订单该放在哪台服务器上的哪个表中,是根据订单的后四位7667,对1024取模之后决定的;同时7667是买家id的后四位。这样买家在查询其订单时就可以通过其id获得其订单所在库以及表,就可以方便有效的查询买家订单了。这里会带来另外一个问题,卖家查询订单时怎么办?前面我们已经提到卖家和买家被分成两个不同的维度来做表设计,卖家查询时不是直接查订单表,而是通过卖家维度的表来做查询。卖家维度的表的插入,更新是通过在订单插入时发一个消息来通知插入的。同样对于发短信、发旺旺也是通过消息来处理的,这些附加功能不参与到下单的事务中去。

    即使这样做了库,表的拆分,依然会有问题。淘宝在双11时的一天的交易量就达到了5000多万,这样几个月过去后,这些拆分后的表中的数据量也会达到很大的一个量,处理速度就会下降。淘宝的做法是把三个月之前的老数据迁移到其他库中,这样就避免了数据量增大导致的系统响应时间降低的问题。但是会带来另外一个问题,用户在查询订单时需要同时查两个库,一个是历史数据表,另一个是近期数据表;这个问题无可避免,就是通过查询两次解决。

    也许有的朋友会想到拆分之后对全数据做统计会有问题。如果在拆分后的表上做统计,是肯定会有问题的。怎么做呢?其实很简单,把数据迁移到别的库中去做统计。

    表做拆分可以大大的提高TPS,但是也会带来一些问题,需要通过可靠的消息通知机制通知其他模块做非核心处理的事情,需要通过高效的搜索系统保证搜索数据的及时更新。

    以上是我个人对淘宝下单高并发设计的理解。这是肤浅的,实际做的时候肯定还需要考虑更多的问题,比如数据库的调优,磁盘IO方式,服务器稳定性;方案的可测试性,可量化等等。

    上周六的技术还分享介绍了很多其他方面的精彩内容。感谢主办方,主持人! 期待@淘宝技术嘉年华 更多精彩的技术沙龙。

    订单号介绍勘误:

    文中对于订单号的表述有点问题,对于16台服务器,每台服务器64张表只需要2位买家或卖家id的后两位数字就可以准确定位到具体的库和表。订单号中同时存在买家id的最后两位和卖家id的最后两位。分别在订单号的倒数第3,4位数和最后两位数。

    假定买家id为123456789,那么在订单号中的最后两位就是89,通过89对16取模就可以定位到具体的库上,通过对64取模就可以定位到具体的表上。

    原文链接:http://www.cnblogs.com/yukaizhao/archive/2012/04/23/taobao_order_design.html


  • 相关阅读:
    Java实现HttpClient发送GET、POST请求(https、http)
    解决.net core 3.1 json日期带T的问题
    Java验证身份证号码的格式
    c++20新特性concept
    位图
    Linux内核 hlist_head/hlist_node结构解析
    linux将c++程序制作成.deb
    应用程序或动态库中与加载的其他动态库的类或者函数重名问题
    vue props 属性值接受多个类型
    异步循环
  • 原文地址:https://www.cnblogs.com/daichangya/p/12959598.html
Copyright © 2020-2023  润新知