• prometheus(4)之alertmanager报警插件


    报警处理流程如下:

    1. Prometheus Server监控目标主机上暴露的http接口(这里假设接口A),通过Promethes配置的'scrape_interval'定义的时间间隔,定期采集目标主机上监控数据。
    2. 当接口A不可用的时候,Server端会持续的尝试从接口中取数据,直到"scrape_timeout"时间后停止尝试。这时候把接口的状态变为“DOWN”。
    3. Prometheus同时根据配置的"evaluation_interval"的时间间隔,定期(默认1min)的对Alert Rule进行评估;当到达评估周期的时候,发现接口A为DOWN,即UP=0为真,激活Alert,进入“PENDING”状态,并记录当前active的时间;
    4. 当下一个alert rule的评估周期到来的时候,发现UP=0继续为真,然后判断警报Active的时间是否已经超出rule里的‘for’ 持续时间,如果未超出,则进入下一个评估周期;如果时间超出,则alert的状态变为“FIRING”;同时调用Alertmanager接口,发送相关报警数据。
    5. AlertManager收到报警数据后,会将警报信息进行分组,然后根据alertmanager配置的“group_wait”时间先进行等待。等wait时间过后再发送报警信息。
    6. 属于同一个Alert Group的警报,在等待的过程中可能进入新的alert,如果之前的报警已经成功发出,那么间隔“group_interval”的时间间隔后再重新发送报警信息。比如配置的是邮件报警,那么同属一个group的报警信息会汇总在一个邮件里进行发送。
    7. 如果Alert Group里的警报一直没发生变化并且已经成功发送,等待‘repeat_interval’时间间隔之后再重复发送相同的报警邮件;如果之前的警报没有成功发送,则相当于触发第6条条件,则需要等待group_interval时间间隔后重复发送。


    同时最后至于警报信息具体发给谁,满足什么样的条件下指定警报接收人,设置不同报警发送频率,这里有alertmanager的route路由规则进行配置。

    alertmanager配置文件

    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m #解析超时时间
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '*****@163.com'
          smtp_auth_username: '138****'
          smtp_auth_password: '****GRMBHNBOY' #登录授权码
          smtp_require_tls: false
        route: #告警分发策略
          group_by: [alertname]  #分组标签依据
          group_wait: 10s #告警等待时间 在等待时间内组中产生新的告警 一起进行发送
          group_interval: 10s #不同组告警 间隔时间
          repeat_interval: 10m #重复告警间隔时间
          receiver: default-receiver #设置默认告警接收人
        receivers: #告警接收
        - name: 'default-receiver'
          email_configs:
          - to: '******@qq.com'
            send_resolved: true
          - to: '******@qq.com'
            send_resolved: true
    alertmanager配置文件解释说明:
    smtp_smarthost: 'smtp.163.com:25'
    #163邮箱的SMTP服务器地址+端口
    smtp_from: '15011572657@163.com'
    #这是指定从哪个邮箱发送报警
    smtp_auth_username: '15011572657'
    #这是发送邮箱的认证用户,不是邮箱名
    smtp_auth_password: ' BGWHYUOSOOHWEUJM'
    #这是发送邮箱的授权码而不是登录密码,你们需要用自己的,不要用我的,用我的你会发不出来报警
    
    email_configs:
       - to: '1980570647@qq.com'
    #to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复
    
      route:  #用于设置告警的分发策略
          group_by: [alertname] 
    #alertmanager会根据group_by配置将Alert分组
          group_wait: 10s      
     # 分组等待时间。也就是告警产生后等待10s,如果有同组告警一起发出
          group_interval: 10s   # 上下两组发送告警的间隔时间
          repeat_interval: 10m    # 重复发送告警的时间,减少相同邮件的发送频率,默认是1h
          receiver: default-receiver  #定义谁来收告警

    安装prometheus+alertmanager

    prometheus+alertmanager配置文件

    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        rule_files:
        - /etc/prometheus/rules.yml
        alerting:
          alertmanagers:
          - static_configs:
            - targets: ["localhost:9093"]
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
        - job_name: 'kubernetes-pods'
          kubernetes_sd_configs:
          - role: pod
          relabel_configs:
          - action: keep
            regex: true
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_scrape
          - action: replace
            regex: (.+)
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_path
            target_label: __metrics_path__
          - action: replace
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
            source_labels:
            - __address__
            - __meta_kubernetes_pod_annotation_prometheus_io_port
            target_label: __address__
          - action: labelmap
            regex: __meta_kubernetes_pod_label_(.+)
          - action: replace
            source_labels:
            - __meta_kubernetes_namespace
            target_label: kubernetes_namespace
          - action: replace
            source_labels:
            - __meta_kubernetes_pod_name
            target_label: kubernetes_pod_name
        - job_name: 'kubernetes-schedule'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.17.166.217:10251','172.17.166.218:10251','172.17.166.219:10251']
        - job_name: 'kubernetes-controller-manager'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.17.166.217:10252','172.17.166.218:10252','172.17.166.219:10252']
        - job_name: 'kubernetes-kube-proxy'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.17.166.219:10249','172.17.27.255:10249','172.17.27.248:10249','172.17.4.79:10249']
        - job_name: 'pushgateway'
          scrape_interval: 5s
          static_configs:
          - targets: ['172.17.166.217:9091']
          honor_labels: true
        - job_name: 'kubernetes-etcd'
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.pem
            cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/kubernetes.pem
            key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/kubernetes-key.pem
          scrape_interval: 5s
          static_configs:
          - targets: ['172.17.166.219:2379','172.17.4.79:2379','172.17.27.255:2379','172.17.27.248:2379']
      rules.yml: |
        groups:
        - name: example
          rules:
          - alert: kube-proxy的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  kube-proxy的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: scheduler的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  scheduler的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: controller-manager的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  controller-manager的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: apiserver的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  apiserver的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: etcd的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  etcd的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: kube-state-metrics的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: kube-state-metrics的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: coredns的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: coredns的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: kube-proxy打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kube-proxy打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
            for: 2s
            labels:
              severity: warnning 
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
              value: "{{ $value }}"
          - alert: kube-proxy
            expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: scheduler
            expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager
            expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver
            expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过6G"
              value: "{{ $value }}"
          - alert: kubernetes-etcd
            expr: (process_virtual_memory_bytes{job=~"kubernetes-etcd"}) / 10  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过6G"
              value: "{{ $value }}"
          - alert: kube-dns
            expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 6000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过6G"
              value: "{{ $value }}"
          - alert: HttpRequestsAvg
            expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
              value: "{{ $value }}"
              threshold: "1000"   
          - alert: Pod_restarts
            expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Pod_waiting
            expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
              value: "{{ $value }}"
              threshold: "1"   
          - alert: Pod_terminated
            expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
              value: "{{ $value }}"
              threshold: "1"
          - alert: Etcd_leader
            expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_leader_changes
            expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_failed
            expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_db_total_size
            expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
              value: "{{ $value }}"
              threshold: "10G"
          - alert: Endpoint_ready
            expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
              value: "{{ $value }}"
              threshold: "1"
        - name: 物理节点状态-监控告警
          rules:
          - alert: 物理节点cpu使用率
            expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
            for: 2s
            labels:
              severity: ccritical
            annotations:
              summary: "{{ $labels.instance }}cpu使用率过高"
              description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
          - alert: 物理节点内存使用率
            expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{ $labels.instance }}内存使用率过高"
              description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
          - alert: InstanceDown
            expr: up == 0
            for: 2s
            labels:
              severity: critical
            annotations:   
              summary: "{{ $labels.instance }}: 服务器宕机"
              description: "{{ $labels.instance }}: 服务器延时超过2分钟"
          - alert: 物理节点磁盘的IO性能
            expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) > 6000000
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
              description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
          - alert: 入网流量带宽
            expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
              description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: 出网流量带宽
            expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
              description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: TCP会话
            expr: node_netstat_Tcp_CurrEstab > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
              description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
          - alert: 磁盘容量
            expr: 100 - ( node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100 )  > 80
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
              description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"
    prometheus-alertmanager-cfg.yaml

    常用报警参数指标:

    • process_cpu_seconds_total 各targets cpu总数(cpu默认采集数据类型counter 使用rate提取一定时间内 数率变化)
    • process_open_fds 各targets 文件打开句柄数 (通常每个链接会占用一个句柄数 也就是一个连接数)
    • process_virtual_memory_bytes 各targets 虚拟内存使用 
    • rest_client_requests_total 各targets TPS (TPS指一定的时间内请求的数量~吞吐量)
    • kube_pod_container_status_restarts_total (pod重启状态)
    • kube_pod_container_status_waiting_reason (pod启动异常 指的是pod 容器启动状态在等待中)
    • kube_pod_container_status_terminated_reason (pod删除状态)
    • etcd_server_leader_changes_seen_total (etcd的leader 也就是主是否重新选举 leader发生变化)
    • etcd_server_proposals_failed_total (etcd服务失败总数)
    • etcd_debugging_mvcc_db_total_size_in_bytes (etcd磁盘的使用,etcd metric默认采集的单位是E prometheus采集单位转换存在问题)
    • kube_endpoint_address_not_ready (etcd状态错误 没有leader 代表当前集群宕机数量超过一半)
    • node_cpu_seconds_total (采集物理节点cpu)
    • node_memory_MemTotal_bytes (采集物理节点内存)
    • up == 0 (代表有服务处于down状态)
    • node_disk_io_time_seconds_total (物理节点I/O使用率)
    • node_network_receive_bytes_total (入网流量)
    • node_network_transmit_bytes_total (出网流量)
    • node_netstat_Tcp_CurrEstab (物理节点tcp会话数)
    • node_filesystem_free_bytes (物理节点磁盘使用)
    • node_filesystem_size_bytes (磁盘总大小)   使用除以总的 *100既得出当前使用率

    安装prometheus+alertmanager

    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
        #matchExpressions:
        #- {key: app, operator: In, values: [prometheus]}
        #- {key: component, operator: In, values: [server]}
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          #nodeName: node1
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: 172.17.166.217/kubenetes/prometheus:v2.2.1
            #imagePullPolicy: IfNotPresent
            command:
            - "/bin/prometheus"
            args:
            - "--config.file=/etc/prometheus/prometheus.yml"
            - "--storage.tsdb.path=/prometheus"
            - "--storage.tsdb.retention=24h"
            - "--web.enable-lifecycle"
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus
              name: prometheus-config
            - mountPath: /prometheus/
              name: prometheus-storage-volume
            - name: k8s-certs
              mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
          - name: alertmanager
            image: 172.17.166.217/kubenetes/alertmanager:v0.14.0
            #imagePullPolicy: IfNotPresent
            args:
            - "--config.file=/etc/alertmanager/alertmanager.yml"
            - "--log.level=debug"
            ports:
            - containerPort: 9093
              protocol: TCP
              name: alertmanager
            volumeMounts:
            - name: alertmanager-config
              mountPath: /etc/alertmanager
            - name: alertmanager-storage
              mountPath: /alertmanager
            - name: localtime
              mountPath: /etc/localtime
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
            - name: k8s-certs
              secret:
               secretName: etcd-certs
            - name: alertmanager-config
              configMap:
                name: alertmanager
            - name: alertmanager-storage
              hostPath:
               path: /data/alertmanager
               type: DirectoryOrCreate
            - name: localtime
              hostPath:
               path: /usr/share/zoneinfo/Asia/Shanghai
    prometheus+alertmanager-deploy.yaml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        name: prometheuss
        kubernetes.io/cluster-service: 'true'
      name: prometheuss
      namespace: monitor-sa
    spec:
      ports:
      - name: prometheus
        #nodePort: 30066
        port: 9090
        protocol: TCP
        targetPort: 9090
      selector:
        app: prometheus
      sessionAffinity: None
      #type: NodePort
    prometheus-svc.yaml

    是因为kube-proxy默认端口10249是监听在127.0.0.1上的,需要改成监听到物理节点上,按如下方法修改,线上建议在安装k8s的时候就做修改,这样风险小一些:

    kubectl edit configmap kube-proxy -n kube-system

    把metricsBindAddress这段修改成metricsBindAddress: 0.0.0.0:10249

    然后重新启动kube-proxy这个pod

    [root@xianchaomaster1]# kubectl get pods -n kube-system | grep kube-proxy |awk '{print $1}' | xargs kubectl delete pods -n kube-system

    [root@xianchaomaster1]# ss  -antulp |grep :10249

    可显示如下

        tcp    LISTEN     0      128    [::]:10249              [::]:*                

    点击status->targets,可看到如下

    点击Alerts,可看到如下

    把controller-manager的cpu使用率大于90%展开,可看到如下

    FIRING表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。

    登录到alertmanager web界面

    浏览器输入192.168.40.180:30066,显示如下

    配置alertmanager-发送报警到钉钉

    1.创建钉钉机器人
    打开电脑版钉钉,创建一个群,创建自定义机器人,按如下步骤创建
    https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq
    
    https://developers.dingtalk.com/document/app/custom-robot-access
    
    
    我创建的机器人如下:
    群设置-->智能群助手-->添加机器人-->自定义-->添加
    
    机器人名称:test
    接收群组:钉钉报警测试
    
    安全设置:
    自定义关键词:cluster1
    
    上面配置好之后点击完成即可,这样就会创建一个test的报警机器人,创建机器人成功之后怎么查看webhook,按如下:
    
    点击智能群助手,可以看到刚才创建的test这个机器人,点击test,就会进入到test机器人的设置界面
    出现如下内容:
    机器人名称:test
    接受群组:钉钉报警测试
    消息推送:开启
    
    webhook:
    https://oapi.dingtalk.com/robot/send?access_token=8a53475677339a11cec453c608543c3d85ea73b330ea70c4b2de96a0839cbb90
    
    安全设置:
    自定义关键词:cluster1
    
    2.安装钉钉的webhook插件,在k8s的控制节点xianchaomaster1操作
    tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz
    prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz压缩包所在的百度网盘地址如下:
    链接:https://pan.baidu.com/s/1_HtVZsItq2KsYvOlkIP9DQ 
    提取码:d59o
    
    cd prometheus-webhook-dingtalk-0.3.0.linux-amd64
    启动钉钉报警插件
    nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=8a53475677339a11cec453c608543c3d85ea73b330ea70c4b2de96a0839cbb90" &
    
    对原来的alertmanager-cm.yaml文件做备份
    cp alertmanager-cm.yaml alertmanager-cm.yaml.bak
    重新生成一个新的alertmanager-cm.yaml文件
    cat >alertmanager-cm.yaml <<EOF
    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '15011572657@163.com'
          smtp_auth_username: '1501157****'
          smtp_auth_password: ‘BGWHYUOSOOHWEUJM'
          smtp_require_tls: false
        route:
          group_by: [alertname]
          group_wait: 10s
          group_interval: 10s
          repeat_interval: 10m
          receiver: cluster1
        receivers:
        - name: cluster1
          webhook_configs:
          - url: 'http://192.168.40.180:8060/dingtalk/cluster1/send'
            send_resolved: true
    EOF
    alertmanager-dd.yaml

    配置alertmanager-发送报警到微信

    1注册企业微信
    
    登陆网址:
    https://work.weixin.qq.com/
    
    找到应用管理,创建应用
    应用名字wechat
    创建成功之后显示如下:

    AgentId:1000003

    Secret:Ov5SWq_JqrolsOj6dD4Jg9qaMu1TTaDzVTCrXHcjlFs

    2.修改alertmanager-cm.yaml
    
    global:
        smtp_smarthost: 'smtp.163.com:25'
        smtp_from: '15011572657@163.com'
        smtp_auth_username: '15011572657'
        smtp_auth_password: 'BGWHYUOSOOHWEUJM'
        smtp_require_tls: false
    route:
        group_by: [alertname]
        group_wait: 10s
        group_interval: 10s
        repeat_interval: 3m
        receiver: "prometheus"
    receivers:
    - name: 'prometheus'
      wechat_configs:
      - corp_id: wwa82df90a693abb15
        to_user: '@all'
        agent_id: 1000003
        api_secret: Ov5SWq_JqrolsOj6dD4Jg9qaMu1TTaDzVTCrXHcjlFs
    
    参数说明:
    secret: 企业微信("企业应用"-->"自定应用"[Prometheus]--> "Secret") 
    wechat是本人自创建应用名称
    corp_id: 企业信息("我的企业"--->"CorpID"[在底部])
    agent_id: 企业微信("企业应用"-->"自定应用"[Prometheus]--> "AgentId") 
    wechat是自创建应用名称 #在这创建的应用名字是wechat,那么在配置route时,receiver也应该是Prometheus
    to_user: '@all' :发送报警到所有人

    配置自定义告警模板

    cat template_wechat.tmpl
    {{ define "wechat.default.message" }}
    {{ range .Alerts }}
    ========start==========
    告警程序:node_exporter
    告警名称:{{ .Labels.alertname }}
    故障主机: {{ .Labels.instance }}
    告警主题: {{ .Annotations.summary }}
    告警信息: {{ .Annotations.description }}
    ========end==========
    {{ end }}
    {{ end }}

    不同告警分组

    routes:
      - match_re:
          service: ^(foo1|foo2|baz)$
        receiver: team-X-mails
        routes:
        - match:
            severity: critical
          receiver: team-X-pager
       
      - match:
          service: files
        receiver: team-Y-mails
     
        routes:
        - match:
            severity: critical
          receiver: team-Y-pager
     
     
      - match:
          service: database
        receiver: team-DB-pager
        # Also group alerts by affected database.
        group_by: [alertname, cluster, database]
        routes:
        - match:
            owner: team-X
          receiver: team-X-pager
          continue: true
        - match:
            owner: team-Y
          receiver: team-Y-pager
    global:#配置邮箱、url、微信等
    route: #配置路由树
      - receiver: #从接受组(与route同级别)中选择接受
      - group_by:[]#填写标签的key,通过相同的key不同的value来判断   ===研究rules中的标签值 
      - continue: false #告警是否去继续路由子节点
      - match: [labelname:labelvalue,labelname1,labelvalue1] #通过标签去匹配这次告警是否符合这个路由节点,???必须全部匹配才可以告警???待测试。
      - match_re: [labelname:regex] #通过正则表达是匹配标签,意义同上
      - group_wait: 30s  #组内等待时间,同一分组内收到第一个告警等待多久开始发送,目标是为了同组消息同时发送,不占用告警信息,默认30s
      - group_interval: 5m #当组内已经发送过一个告警,组内若有新增告警需要等待的时间,默认为5m,这条要确定组内信息是影响同一业务才能设置,若分组不合理,可能导致告警延迟,造成影响
      - repeat_inteval: 4h #告警已经发送,且无新增告警,若重复告警需要间隔多久 默认4h 属于重复告警,时间间隔应根据告警的严重程度来设置
      routes:
         - route:#路由子节点 配置信息跟主节点的路由信息一致

    例如:

    route:
      receiver: 'default-receiver'
      group_wait: 30s
      group_interval: 5m
      repeat_interval: 4h
      group_by: [cluster, alertname]
      routes:
      - receiver: 'database-pager'
        group_wait: 10s
        match_re:
          service: mysql|cassandra
      - receiver: 'frontend-pager'
        group_by: [product, environment]
        match:
          team: frontend
  • 相关阅读:
    第十一周课程总结
    第七周课程总结&实验报告(五)
    第四周课程总结&试验报告(二)
    2019春总结作业
    第十二周编程总结
    第十一周编程总结
    JAVA学期总结
    第十四周课程总结&实验报告
    第十三周课程总结
    第十二周学习总结
  • 原文地址:https://www.cnblogs.com/dahuige/p/15098228.html
Copyright © 2020-2023  润新知