Tri Tiling
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9016 Accepted: 4684
Description
In how many ways can you tile a 3xn rectangle with 2x1 dominoes?
Here is a sample tiling of a 3x12 rectangle.
Input
Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 <= n <= 30.
Output
For each test case, output one integer number giving the number of possible tilings.
Sample Input
2
8
12
-1
Sample Output
3
153
2131
Source
之前也写过这种堆方块,就是找递推的方程,还是比较简单的题目。但是这道题目却是一个升级,因为他的递推方程需要变形,所以以后遇到这类题目就又多了一点见识。
dp[n]=3*dp[n-2]+2*dp[n-4]+2*dp[n-6]+……2*dp[0];
如果只拿这个方程去解肯定麻烦或者还可能超时
变形
dp[n-2]=3*dp[n-4]+2*(dp[n-6]+dp[n-8]+…..dp[0]);
dp[n-2]-dp[n-4]=2*(dp[n-4]+dp[n-6]+dp[n-8]+….dp[0]);
dp[n]=4*dp[n-2]-dp[n-4];
就搞定了,
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
int dp[35];
int n;
int main()
{
dp[0]=1;
dp[1]=0;
dp[2]=3;
for(int i=3;i<=30;i++)
{
if(i&1)
dp[i]=0;
else
dp[i]=dp[i-2]*4-dp[i-4];
}
while(scanf("%d",&n)!=EOF)
{
if(n==-1)
break;
printf("%d
",dp[n]);
}
return 0;
}