• ZOJ 3469Food Delivery(区间DP)


    Food Delivery

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.

    Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters. And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.

    You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure Index. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ithperson will gain Bi Displeasure Index per minute.

    If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Indexas low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.

    Input

    The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0),X ( X >= 0 ), then N lines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.

    You can safely assume that all numbers in the input and output will be less than 231 - 1.

    Please process to the end-of-file.

    Output

    For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.

    Sample Input

    5 1 0
    1 1
    2 2
    3 3
    4 4
    5 5

    Sample Output

    55


    区间DP

    dp[i][j][k] 表示i到j这个区间送完了,快递小哥在哪个端点。

    关于区间DP,可以参照这个博客大笑

    http://blog.csdn.net/dacc123/article/details/50885903

    #include <iostream>
     #include <string.h>
     #include <stdlib.h>
     #include <algorithm>
     #include <math.h>
     #include <stdio.h>
    
     using namespace std;
     #define MAX 100000000
     int n,v,x;
    struct Node
    {
        int xi;
        int bi;
    }a[1005];
    int dp[1005][1005][2];
    int cmp(Node a,Node b)
    {
        return a.xi<b.xi;
    }
    int sum[1005];
    int main()
    {
        while(scanf("%d%d%d",&n,&v,&x)!=EOF)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d%d",&a[i].xi,&a[i].bi);
            }
             a[n+1].xi=x;a[n+1].bi=0;
            sort(a+1,a+n+2,cmp);
            int pos=0;
            sum[0]=0;
            for(int i=1;i<=n+1;i++)
                sum[i]=sum[i-1]+a[i].bi;
            for(int j=1;j<=n+1;j++)
                if(a[j].xi==x)
                    pos=j;
            for(int i=0;i<=n+1;i++)
                for(int j=0;j<=n+1;j++)
                   dp[i][j][0]=MAX,dp[i][j][1]=MAX;
            dp[pos][pos][0]=0;
            dp[pos][pos][1]=0;
            for(int i=pos;i>=1;i--)
            {
                for(int j=pos;j<=n+1;j++)
                {
                    if(i==j)
                        continue;
                    int num=sum[i-1]-sum[0]+sum[n+1]-sum[j];
                    dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j].xi-a[j-1].xi)*(a[j].bi+num));
                    dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j].xi-a[i].xi)*(a[j].bi+num));
                    dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1].xi-a[i].xi)*(a[i].bi+num));
                    dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j].xi-a[i].xi)*(a[i].bi+num));
                }
            }
            printf("%d
    ",min(dp[1][n+1][0],dp[1][n+1][1])*v);
    
        }
        return 0;
    }


  • 相关阅读:
    开源微信管家平台——JeeWx 捷微4.0 微服务版本发布,全新架构,全新UI,提供强大的图文编辑器
    JeeWx全新版本发布!捷微二代微信活动平台1.0发布!活动插件持续开源更新!
    JEECG 3.7.8 新版表单校验提示风格使用&升级方法(validform 新风格漂亮,布局简单)
    Java快速开发平台——JEECG 3.7.8 版本发布!我们的目标是有鱼丸也有粗面
    企业如何快速搭建小程序官网
    如何玩转小程序+公众号?手把手教你JeeWx小程序CMS与公众号关联
    deepClone deepCompare
    fiddler
    spy-debugger
    队列
  • 原文地址:https://www.cnblogs.com/dacc123/p/8228744.html
Copyright © 2020-2023  润新知