1021. Deepest Root (25)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
Sample Input 1:5 1 2 1 3 1 4 2 5Sample Output 1:
3 4 5Sample Input 2:
5 1 3 1 4 2 5 3 4Sample Output 2:
Error: 2 components
先求连通块,通过并查集,
然后枚举每一个点dfs,
#include <iostream> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <math.h> #include <algorithm> #include <vector> using namespace std; const int maxn=1e4; int n; struct Node { int value; int next; }edge[maxn*2+5]; int father[maxn+5]; int head[maxn+5]; int vis[maxn+5]; int num[maxn+5]; int tag[maxn+5]; int tot,cnt; void add(int x,int y) { edge[tot].value=y; edge[tot].next=head[x]; head[x]=tot++; } int find(int x) { if(father[x]!=x) father[x]=find(father[x]); return father[x]; } void dfs(int root,int deep) { vis[root]=1; int tag=0; for(int i=head[root];i!=-1;i=edge[i].next) { int y=edge[i].value; if(!vis[y]) { tag=1; dfs(y,deep+1); } } if(!tag) num[cnt]=max(num[cnt],deep); } int main() { scanf("%d",&n); int x,y; memset(head,-1,sizeof(head)); for(int i=1;i<=n;i++) father[i]=i; tot=0; for(int i=1;i<n;i++) { scanf("%d%d",&x,&y); int fx=find(x); int fy=find(y); if(fx!=fy) father[fx]=fy; add(x,y); add(y,x); } memset(tag,0,sizeof(tag)); int res=0; for(int i=1;i<=n;i++) { find(i); tag[father[i]]=1; } for(int i=1;i<=n;i++) if(tag[i]) res++; if(res>1) printf("Error: %d components ",res); else { for(int i=1;i<=n;i++) { memset(vis,0,sizeof(vis)); cnt=i; dfs(i,0); } int ans=0; for(int i=1;i<=cnt;i++) ans=max(ans,num[i]); for(int i=1;i<=cnt;i++) if(num[i]==ans) printf("%d ",i); } return 0; }