• RT-Thread中的串口DMA分析


    这里分析一下RT-Thread中串口DMA方式的实现,以供做新处理器串口支持时的参考。

    背景

    在如今的芯片性能和外设强大功能的情况下,串口不实现DMA/中断方式操作,我认为在实际项目中基本是不可接受的,但遗憾的是,rt-thread现有支持的实现中,基本上没有支持串口的DMA,文档也没有关于串口DMA支持相关的说明,这里以STM32实现为背景,梳理一下串口DMA的实现流程,以供新处理器实现时以作参考。

    DMA接收准备

    启用DMA接收,需要在打开设备的时候做一些处理,入口函数为rt_device_open()。主体实现是:

    rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflag)
    {
        ......
        result = device_init(dev);
        ......
        result = device_open(dev, oflag);
        ......
    }
    

    device_init()就是rt_serial_init()函数,其主要是调用configure()函数,

    static rt_err_t rt_serial_init(struct rt_device *dev)
    {
        ......
        if (serial->ops->configure)
            result = serial->ops->configure(serial, &serial->config);
        ......
    }
    

    在stm32下,其configure()函数是stm32_configure(),其根据设备打开参数,配置STM32外设的寄存器。包括波特率、校验等串口工作参数。

    device_open()函数就是rt_serial_open()函数,其主要实现是:

    static rt_err_t rt_serial_open(struct rt_device *dev, rt_uint16_t oflag)
    {
        ......
    
    #ifdef RT_SERIAL_USING_DMA        
        else if (oflag & RT_DEVICE_FLAG_DMA_RX)
        {
            if (serial->config.bufsz == 0) {
                struct rt_serial_rx_dma* rx_dma;
    
                rx_dma = (struct rt_serial_rx_dma*) rt_malloc (sizeof(struct rt_serial_rx_dma));
                RT_ASSERT(rx_dma != RT_NULL);
                rx_dma->activated = RT_FALSE;
    
                serial->serial_rx = rx_dma;
            } else {
                struct rt_serial_rx_fifo* rx_fifo;
    
                rx_fifo = (struct rt_serial_rx_fifo*) rt_malloc (sizeof(struct rt_serial_rx_fifo) +
                    serial->config.bufsz);
                RT_ASSERT(rx_fifo != RT_NULL);
                rx_fifo->buffer = (rt_uint8_t*) (rx_fifo + 1);
                rt_memset(rx_fifo->buffer, 0, serial->config.bufsz);
                rx_fifo->put_index = 0;
                rx_fifo->get_index = 0;
                rx_fifo->is_full = RT_FALSE;
                serial->serial_rx = rx_fifo;
                /* configure fifo address and length to low level device */
                serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *) RT_DEVICE_FLAG_DMA_RX);
            }
            dev->open_flag |= RT_DEVICE_FLAG_DMA_RX;
        }
    #endif /* RT_SERIAL_USING_DMA */
    	......
    #ifdef RT_SERIAL_USING_DMA
        else if (oflag & RT_DEVICE_FLAG_DMA_TX)
        {
            struct rt_serial_tx_dma* tx_dma;
    
            tx_dma = (struct rt_serial_tx_dma*) rt_malloc (sizeof(struct rt_serial_tx_dma));
            RT_ASSERT(tx_dma != RT_NULL);
            tx_dma->activated = RT_FALSE;
    
            rt_data_queue_init(&(tx_dma->data_queue), 8, 4, RT_NULL);
            serial->serial_tx = tx_dma;
    
            dev->open_flag |= RT_DEVICE_FLAG_DMA_TX;
            /* configure low level device */
            serial->ops->control(serial, RT_DEVICE_CTRL_CONFIG, (void *)RT_DEVICE_FLAG_DMA_TX);
        }
    #endif /* RT_SERIAL_USING_DMA */
        ......
    }
    

    可见,其主要工作是为DMA接收准备FIFO缓冲区;为DMA发送准备发送数据缓冲队列,但是好像STM32中断并没有用到发送数据缓冲。

    DMA配置数据来源是rt_hw_usart_init()函数,缺省的配置参数由宏RT_SERIAL_CONFIG_DEFAULT决定, 这里决定了缺省的接收缓冲区参数是64字节,通讯缺省参数是:115200,8N1。

    #define RT_SERIAL_RB_BUFSZ              64
    

    DMA接收

    DMA接收我们从DMA中断开始分析,DMA接收中断服务函数为UARTn_DMA_RX_IRQHandler(),其调用HAL库的DMA处理函数HAL_DMA_IRQHandler(),该函数调用回调函数HAL_UART_RxCpltCallback()或HAL_UART_RxHalfCpltCallback(),这两个函数进入真正的中断服务处理函数dma_isr(struct rt_serial_device *),主体代码如下:

    static void dma_isr(struct rt_serial_device *serial)
    {
        ......
        /* 如果是DMA-RX中断 */
        if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) ||
                (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET))
        {
            level = rt_hw_interrupt_disable();
            /* 得到本次接收到的数据量 */
            recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
            if (recv_total_index == 0)
            {
                /* 这一句代码,是什么意思? */
                recv_len = serial->config.bufsz - uart->dma_rx.last_index;
            }
            else
            {
                /* 减去以前接收到的数据量,得到本次接收到的数据数量 */
                recv_len = recv_total_index - uart->dma_rx.last_index;
            }
            /* 更新接收历史数据量 */
            uart->dma_rx.last_index = recv_total_index;
            rt_hw_interrupt_enable(level);
    
            if (recv_len)
            {
                /* 如果有新数据,调用serial设备模块的通用处理 */
                rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
            }
        }
    }
    

    在serial模块的函数rt_hw_serial_isr()中,主体代码是:

    void rt_hw_serial_isr(struct rt_serial_device *serial, int event)
    {
        ......
        case RT_SERIAL_EVENT_RX_DMADONE:
        {
            int length;
            rt_base_t level;
    
            /* get DMA rx length */
            length = (event & (~0xff)) >> 8;
    
            if (serial->config.bufsz == 0)
            {
                /* 这个case的处理逻辑不知道怎么应用,看起来STM32实现并没有处理这个case */
                struct rt_serial_rx_dma* rx_dma;
    
                rx_dma = (struct rt_serial_rx_dma*) serial->serial_rx;
                RT_ASSERT(rx_dma != RT_NULL);
    
                RT_ASSERT(serial->parent.rx_indicate != RT_NULL);
                serial->parent.rx_indicate(&(serial->parent), length);
                rx_dma->activated = RT_FALSE;
            }
            else
            {
                /* disable interrupt */
                level = rt_hw_interrupt_disable();
                /* update fifo put index, 将数据放入接收缓冲区 */
                rt_dma_recv_update_put_index(serial, length);
                /* calculate received total length, 更新缓冲区信息 */
                length = rt_dma_calc_recved_len(serial);
                /* enable interrupt */
                rt_hw_interrupt_enable(level);
                /* invoke callback, 通知上层,有新数据到达 */
                if (serial->parent.rx_indicate != RT_NULL)
                {
                    serial->parent.rx_indicate(&(serial->parent), length);
                }
            }
            break;
        }
        ......
    }
    

    上层接到通知后,读取函数最终调用驱动读函数rt_serial_read()函数,在DMA的条件下,调用_serial_dma_rx()从缓冲区读取数据。其代码为:

    static rt_size_t rt_serial_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size)
    {
        ......
        else if (dev->open_flag & RT_DEVICE_FLAG_DMA_RX)
        {
            return _serial_dma_rx(serial, (rt_uint8_t *)buffer, size);
        }
        ......
    }
    

    DMA发送

    DMA发送从驱动写函数rt_serial_write()开始,在DMA的条件下,调用_serial_dma_tx(),_serial_dma_tx()再调用操作的DMA发送函数发送数据,代码为:

    static rt_size_t rt_serial_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size)
    {
        ......
        else if (dev->open_flag & RT_DEVICE_FLAG_DMA_TX)
        {
            return _serial_dma_tx(serial, (const rt_uint8_t *)buffer, size);
        }
        ......
    }
    
    rt_inline int _serial_dma_tx(struct rt_serial_device *serial, const rt_uint8_t *data, int length)
    {
        ......
        /* make a DMA transfer */
        serial->ops->dma_transmit(serial, (rt_uint8_t *)data, length, RT_SERIAL_DMA_TX);
        ......
    }
    

    STM32的dma_transmit()实现函数是stm32_dma_transmit(),其实现就是简单调用HAL_UART_Transmit_DMA(),代码为:

    static rt_size_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
    {
        ......
        if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
        ......
    }
    

    实现非常简单。

     
     
     
     
     
  • 相关阅读:
    《web-Mail服务的搭建》
    VMware虚拟机三种联网方法及原理
    Java总结——常见Java集合实现细节(1)
    nginx静态资源缓存策略配置
    算术验证
    JPA学习
    Spring中AOP实现
    转:Spring中事物管理
    使用docker发布spring cloud应用
    综合使用spring cloud技术实现微服务应用
  • 原文地址:https://www.cnblogs.com/dabbler/p/11582199.html
Copyright © 2020-2023  润新知