• [Paddle学习笔记][12][基于YOLOv3的昆虫检测-模型预测]


    说明:

    本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第五部分,使用非极大值抑制来消除预测出的重叠面积过大的边框,然后显示预测结果图像。

    实验代码:

    模型预测:

    import paddle.fluid as fluid
    from paddle.fluid.dygraph.base import to_variable
    
    from source.data import single_test_reader, display_infer
    from source.model import YOLOv3
    from source.infer import get_nms_infer
    
    num_classes = 7                                                                              # 类别数量
    anchor_size = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] # 锚框大小
    anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]                                              # 锚框掩码
    downsample_ratio = 32                                                                        # 下采样率
    
    image_path = './dataset/test/images/1872.jpeg' # 预测图像路径
    model_path = './output/darknet53-yolov3'       # 网络权重路径
    sco_threshold = 0.70                           # 预测得分阈值:根据测试的平均精度在准确率和召回率之间取一个平衡值
    nms_threshold = 0.45                           # 非极大值阈值
    
    with fluid.dygraph.guard():
        # 读取图像
        image, image_size = single_test_reader(image_path) # 读取图像
        image = to_variable(image)                         # 转换格式
        image_size = to_variable(image_size)               # 转换格式
        
        # 加载模型
        model = YOLOv3(num_classes=num_classes, anchor_mask=anchor_mask) # 加载模型
        model_dict, _ = fluid.load_dygraph(model_path)                   # 加载权重
        model.load_dict(model_dict)                                      # 设置权重
        model.eval()                                                     # 设置验证
        
        # 前向传播
        infer = model(image)
        
        # 获取结果
        infer = get_nms_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio, 
                              sco_threshold, nms_threshold)
        
        # 显示结果
        print('image infer:', infer[0].shape[0]) # 显示图像预测结果数量
        display_infer(infer[0], image_path)      # 显示一张图像预测结果

    结果:

    image infer: 6

    infer.py文件

    import numpy as np
    
    def sigmoid(x):
        """
        功能:
            计算sigmoid函数
        输入:
            x - 输入数值
        输出:
            y - 输出数值
        """
        return 0.5 * (1.0 + np.tanh(0.5 * x))
    
    # def sigmoid(x):
    #     return 1.0 / (1.0 + np.exp(-x))
    
    def get_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
        """
        功能:
            计算每个特征图像的预测边框和得分
        输入:
            infer            - 特征图像
            image_size       - 图像高宽
            num_classes      - 类别数量
            anchor_size      - 锚框大小
            anchor_mask      - 锚框掩码
            downsample_ratio - 下采样率
        输出:
            pdbox            - 预测边框
            pdsco            - 预测得分
        """
        # 调整特征形状
        batch_size = infer.shape[0]   # 特征批数
        num_rows   = infer.shape[2]   # 特征行数
        num_cols   = infer.shape[3]   # 特征列数
        num_anchor = len(anchor_mask) # 锚框数量
        
        infer = infer.numpy()
        infer = infer.reshape([-1, num_anchor, 5 + num_classes, num_rows, num_cols]) # 转换特征形状
        
        # 计算预测边框
        pdloc = infer[:, :, 0:4, :, :]           # 获取预测位置:[b,c,4,n,m]
        pdbox = np.zeros(pdloc.shape)            # 预测边框数组:[b,c,4,n,m]
        image_h = num_rows * downsample_ratio    # 预测图像高度
        image_w = num_cols * downsample_ratio    # 预测图像宽度
        
        for m in range(batch_size): # 遍历图像
            for i in range(num_rows): # 遍历行数
                for j in range(num_cols): # 遍历列数
                    for k in range(num_anchor): # 遍历锚框
                        # 获取边框大小
                        anchor_w = anchor_size[2 * anchor_mask[k]]     # 锚框宽度
                        anchor_h = anchor_size[2 * anchor_mask[k] + 1] # 锚框高度
                        
                        # 设置预测边框
                        pdbox[m, k, 0, i, j] = j        # 预测边框cx
                        pdbox[m, k, 1, i, j] = i        # 预测边框cy
                        pdbox[m, k, 2, i, j] = anchor_w # 预测边框pw
                        pdbox[m, k, 3, i, j] = anchor_h # 预测边框ph
                        
        pdbox[:, :, 0, :, :] = (pdbox[:, :, 0, :, :] + sigmoid(pdloc[:, :, 0, :, :])) / num_cols # 预测边框x=cx + dx
        pdbox[:, :, 1, :, :] = (pdbox[:, :, 1, :, :] + sigmoid(pdloc[:, :, 1, :, :])) / num_rows # 预测边框y=cy + dy
        pdbox[:, :, 2, :, :] = (pdbox[:, :, 2, :, :] * np.exp(pdloc[:, :, 2, :, :])) / image_w   # 预测边框w=pw * exp(tw)
        pdbox[:, :, 3, :, :] = (pdbox[:, :, 3, :, :] * np.exp(pdloc[:, :, 3, :, :])) / image_h   # 预测边框h=ph * exp(th)
        pdbox = np.clip(pdbox, 0.0, 1.0) # 限制预测边框范围为[0,1]
        
        pdbox = pdbox.transpose((0, 1, 3, 4, 2))                     # 调整数据维度:[b,c,n,m,4]
        pdbox = pdbox.reshape((pdbox.shape[0], -1, pdbox.shape[-1])) # 调整数据形状:[b,c*n*m,4]
        
        # 调整坐标格式
        pdbox[:, :, 0] = pdbox[:, :, 0] - pdbox[:, :, 2] / 2.0 # 预测边框x1
        pdbox[:, :, 1] = pdbox[:, :, 1] - pdbox[:, :, 3] / 2.0 # 预测边框y1
        pdbox[:, :, 2] = pdbox[:, :, 0] + pdbox[:, :, 2]       # 预测边框x2
        pdbox[:, :, 3] = pdbox[:, :, 1] + pdbox[:, :, 3]       # 预测边框y2
        
        # 计算原图坐标
        scale = image_size.numpy() # 原图高宽
        for m in range(batch_size):
            pdbox[m, :, 0] = pdbox[m, :, 0] * scale[m, 1] # 预测边框x1
            pdbox[m, :, 1] = pdbox[m, :, 1] * scale[m, 0] # 预测边框y1
            pdbox[m, :, 2] = pdbox[m, :, 2] * scale[m, 1] # 预测边框x2
            pdbox[m, :, 3] = pdbox[m, :, 3] * scale[m, 0] # 预测边框y2
        
        # 计算预测得分
        pdobj = sigmoid(infer[:, :, 4, :, :])               # 预测物体概率:[b,c,n,m],对损失函数计算结果求sigmoid
        pdcls = sigmoid(infer[:, :, 5:5+num_classes, :, :]) # 预测类别概率:[b,c,7,n,m],对损失函数计算结果求sigmoid
        
        pdobj = np.expand_dims(pdobj, axis=2)                        # 添加数据维度:[b,c,1,n,m]
        pdsco = pdobj * pdcls                                        # 计算预测得分:[b,c,7,n,m]
        
        pdsco = pdsco.transpose((0, 1, 3, 4, 2))                     # 调整数据维度:[b,c,n,m,7]
        pdsco = pdsco.reshape((pdsco.shape[0], -1, pdsco.shape[-1])) # 调整数据形状:[b,c*n*m,7]
        pdsco = pdsco.transpose((0, 2, 1))                           # 调整数据维度:[b,7,c*n*m]
        
        return pdbox, pdsco
    
    # def get_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
    #     # 获取锚框大小
    #     anchor_list = [] # 锚框列表
    #     for i in anchor_mask: # 遍历锚框
    #         anchor_list.append(anchor_size[2 * i])     # 锚框宽度
    #         anchor_list.append(anchor_size[2 * i + 1]) # 锚框高度
        
    #     # 计算预测结果
    #     pdbox, pdsco = fluid.layers.yolo_box(
    #         x=infer,
    #         img_size=image_size,
    #         class_num=num_classes,
    #         anchors=anchor_list,
    #         conf_thresh=0.01,
    #         downsample_ratio=downsample_ratio)
        
    #     pdsco = fluid.layers.transpose(pdsco, perm=[0, 2, 1])
        
    #     return pdbox.numpy(), pdsco.numpy()
    
    def get_sum_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio):
        """
        功能:
            计算三个输出的预测结果的边框和得分
        输入:
            infer            - 特征列表
            image_size       - 图像高宽
            num_classes      - 类别数量
            anchor_size      - 锚框大小
            anchor_mask      - 锚框掩码
            downsample_ratio - 下采样率
        输出:
            pdbox            - 预测边框
            pdsco            - 预测得分
        """
        # 计算预测结果
        pdbox_list = [] # 预测边框列表
        pdsco_list = [] # 预测得分列表
        for i in range(len(infer)):  # 遍历特征列表
            pdbox, pdsco = get_infer(infer[i], image_size, num_classes, anchor_size, anchor_mask[i], downsample_ratio)
            
            pdbox_list.append(pdbox) # 添加边框列表
            pdsco_list.append(pdsco) # 添加得分列表
            
            # 减小下采样率
            downsample_ratio //= 2   # 减小下采样率
        
        # 合并预测结果
        pdbox = np.concatenate(pdbox_list, axis=1) # 连接预测边框列表第一维
        pdsco = np.concatenate(pdsco_list, axis=2) # 连接预测得分列表第二维
        
        return pdbox, pdsco
    
    ##############################################################################################################
    
    def get_box_iou_xyxy(box1, box2):
        """
        功能: 
            计算边框交并比值
        输入: 
            box1 - 边界框1
            box2 - 边界框2
        输出:
            iou  - 交并比值
        """
        # 计算交集面积
        x1_min, y1_min, x1_max, y1_max = box1[0], box1[1], box1[2], box1[3]
        x2_min, y2_min, x2_max, y2_max = box2[0], box2[1], box2[2], box2[3]
        
        x_min = np.maximum(x1_min, x2_min)
        y_min = np.maximum(y1_min, y2_min)
        x_max = np.minimum(x1_max, x2_max)
        y_max = np.minimum(y1_max, y2_max)
        
        w = np.maximum(x_max - x_min + 1.0, 0)
        h = np.maximum(y_max - y_min + 1.0, 0)
        
        intersection = w * h # 交集面积
        
        # 计算并集面积
        s1 = (y1_max - y1_min + 1.0) * (x1_max - x1_min + 1.0)
        s2 = (y2_max - y2_min + 1.0) * (x2_max - x2_min + 1.0)
        
        union = s1 + s2 - intersection # 并集面积
        
        # 计算交并比
        iou = intersection / union
        
        return iou
    
    def get_nms_index(pdbox, pdsco, sco_threshold, nms_threshold):
        """
        功能:
            获取非极大值抑制预测索引
        输入:
            pdbox         - 预测边框
            pdsco         - 预测得分
            sco_threshold - 预测得分阈值
            nms_threshold - 非极大值阈值
        输出:
            nms_index     - 预测索引
        """
        # 获取得分索引
        sco_index = np.argsort(pdsco)[::-1] # 对得分逆向排序,获取预测得分索引
        
        # 非极大值抑制
        nms_index = [] # 预测索引列表
        while(len(sco_index) > 0): # 如果剩余得分索引数量大于0,则进行非极大值抑制
            # 获取最大得分
            max_index = sco_index[0]     # 获取最大得分索引
            max_score = pdsco[max_index] # 获取最大得分
            
            if max_score < sco_threshold: # 如果最大得分小于预测得分阈值,则不处理剩余得分索引
                break
            
            # 设置保留标识
            keep_flag = True # 保留标识为真
            for i in nms_index: # 遍历保留索引
                # 计算交并比值
                box1 = pdbox[max_index] # 第一个边框坐标
                box2 = pdbox[i]         # 保留的边框坐标
                
                iou = get_box_iou_xyxy(box1, box2) # 计算交并比值
                if iou > nms_threshold: # 如果交并比值大于非极大值阈值,则不处理剩余保留索引
                    keep_flag = False # 保留标识为假
                    break
            
            # 添加保留索引
            if keep_flag: # 如果保留标识为真,则添加预测索引
                nms_index.append(max_index) # 添加预测索引列表
            
            # 获取剩余索引
            sco_index = sco_index[1:]
        
        # 转换数据格式
        nms_index = np.array(nms_index)
        
        return nms_index
    
    def get_nms_class(pdbox, pdsco, sco_threshold, nms_threshold):
        """
        功能:
            获取非极大值抑制的预测结果
        输入:
            pdbox         - 预测边框
            pdsco         - 预测得分
            sco_threshold - 预测得分阈值
            nms_threshold - 非极大值阈值
        输出:
            infer_list    - 预测结果列表
        """
        # 获取批次结果
        batch_size = pdbox.shape[0] # 预测批数数量
        class_numb = pdsco.shape[1] # 总的类别数量
        infer_list = []             # 预测结果列表
        
        for i in range(batch_size): # 遍历批次
            # 获取预测结果
            infer = [] # 每批预测列表
            for c in range(class_numb): # 遍历类别
                # 获取预测索引
                nms_index = get_nms_index(pdbox[i], pdsco[i][c], sco_threshold, nms_threshold)
                if len(nms_index) < 1: # 如果预测索引为0,则计算下一个类别索引
                    continue
                    
                # 设置预测结果
                nms_pdsco = pdsco[i][c][nms_index]            # 预测得分
                nms_pdbox = pdbox[i][nms_index]               # 预测边框
                nms_infer = np.zeros([nms_pdsco.shape[0], 6]) # 预测结果
                
                nms_infer[:, 0] = c                 # 设置预测类别
                nms_infer[:, 1] = nms_pdsco[:]      # 设置预测得分
                nms_infer[:, 2:6] = nms_pdbox[:, :] # 设置预测边框
                
                infer.append(nms_infer)             # 添加每类结果
            
            # 添加预测列表        
            if len(infer) > 0:
                infer = np.concatenate(infer, axis=0) # 合并各批预测结果
                infer_list.append(infer)              # 添加预测结果列表
            else:
                infer_list.append(infer)              # 添加空的预测结果
            
        return infer_list
    
    ##############################################################################################################
    
    def get_nms_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio, 
                      sco_threshold, nms_threshold):
        """
        功能:
            获取三个输出的非极大值抑制的预测结果
        输入:
            infer            - 特征列表
            image_size       - 原图高宽
            num_classes      - 类别数量
            anchor_size      - 锚框大小
            anchor_mask      - 锚框掩码
            downsample_ratio - 下采样率
            sco_threshold    - 预测得分阈值
            nms_threshold    - 非极大值阈值
        输出:
            infer            - 预测结果
        """
        # 计算预测结果
        pdbox, pdsco = get_sum_infer(infer, image_size, num_classes, anchor_size, anchor_mask, downsample_ratio)
        
        # 非极大值抑制
        infer = get_nms_class(pdbox, pdsco, sco_threshold, nms_threshold)
        
        return infer

    参考资料:

    https://blog.csdn.net/litt1e/article/details/88814417

    https://blog.csdn.net/litt1e/article/details/88852745

    https://blog.csdn.net/litt1e/article/details/88907542

    https://aistudio.baidu.com/aistudio/projectdetail/742781

    https://aistudio.baidu.com/aistudio/projectdetail/672017

    https://aistudio.baidu.com/aistudio/projectdetail/868589

    https://aistudio.baidu.com/aistudio/projectdetail/122277

  • 相关阅读:
    我爱淘冲刺阶段站立会议每天任务2
    我爱淘冲刺阶段站立会议每天任务1
    大道至简-灵活的软件工程
    大道至简-实现,才是目的
    冲刺第二阶段工作总结06
    课堂练习-最低价购书方案
    构建之法阅读笔记04
    冲刺第二阶段工作总结05
    冲刺第二阶段工作总结04
    冲刺第二阶段工作总结03
  • 原文地址:https://www.cnblogs.com/d442130165/p/13685611.html
Copyright © 2020-2023  润新知