• mnist数据集进行自编码


    """
    自动编码的核心就是各种全连接的组合,它是一种无监督的形式,因为他的标签是自己。
    """
    import torch
    import torch.nn as nn
    from torch.autograd import Variable
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    import numpy as np
    
    # 超参数
    EPOCH = 10
    BATCH_SIZE = 64
    LR = 0.005
    DOWNLOAD_MNIST = False
    N_TEST_IMG = 5
    
    # Mnist数据集
    train_data = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=DOWNLOAD_MNIST,
    )
    
    print(train_data.train_data.size())     # (60000, 28, 28)
    print(train_data.train_labels.size())   # (60000)
    
    # 显示出一个例子
    plt.imshow(train_data.train_data[2].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[2])
    plt.show()
    
    # 将数据集分为多批数据
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # 搭建自编码网络框架
    class AutoEncoder(nn.Module):
        def __init__(self):
            super(AutoEncoder, self).__init__()
    
            self.encoder = nn.Sequential(
                nn.Linear(28*28, 128),
                nn.Tanh(),
                nn.Linear(128, 64),
                nn.Tanh(),
                nn.Linear(64, 12),
                nn.Tanh(),
                nn.Linear(12, 3),
            )
            self.decoder = nn.Sequential(
                nn.Linear(3, 12),
                nn.Tanh(),
                nn.Linear(12, 64),
                nn.Tanh(),
                nn.Linear(64, 128),
                nn.Tanh(),
                nn.Linear(128, 28*28),
                nn.Sigmoid(), # 将输出结果压缩到0到1之间,因为train_data的数据在0到1之间
            )
    
        def forward(self, x):
            encoded = self.encoder(x)
            decoded = self.decoder(encoded)
            return encoded, decoded
    
    autoencoder = AutoEncoder()
    
    optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
    loss_func = nn.MSELoss()
    
    # initialize figure
    f, a = plt.subplots(2, N_TEST_IMG, figsize=(5, 2))
    plt.ion()   # 设置为实时打印
    
    # 第一行是原始图片
    view_data = Variable(train_data.train_data[:N_TEST_IMG].view(-1, 28*28).type(torch.FloatTensor)/255.)
    for i in range(N_TEST_IMG):
        a[0][i].imshow(np.reshape(view_data.data.numpy()[i], (28, 28)), cmap='gray'); a[0][i].set_xticks(()); a[0][i].set_yticks(())
    
    for epoch in range(EPOCH):
        for step, (x, y) in enumerate(train_loader):
            b_x = Variable(x.view(-1, 28*28))
            b_y = Variable(x.view(-1, 28*28))
    
            encoded, decoded = autoencoder(b_x)
    
            loss = loss_func(decoded, b_y)
            optimizer.zero_grad()     # 将上一部的梯度清零
            loss.backward()           # 反向传播,计算梯度          
            optimizer.step()          # 优化网络中的各个参数
    
            if step % 100 == 0:
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0])
    
                # 第二行画出解码后的图片
                _, decoded_data = autoencoder(view_data)
                for i in range(N_TEST_IMG):
                    a[1][i].clear()
                    a[1][i].imshow(np.reshape(decoded_data.data.numpy()[i], (28, 28)), cmap='gray')
                    a[1][i].set_xticks(()); a[1][i].set_yticks(())
                plt.draw(); plt.pause(0.05)
    
    plt.ioff()
    plt.show()
    
    # 可视化三维图
    view_data = Variable(train_data.train_data[:200].view(-1, 28*28).type(torch.FloatTensor)/255.)
    encoded_data, _ = autoencoder(view_data)
    fig = plt.figure(2); ax = Axes3D(fig)
    X, Y, Z = encoded_data.data[:, 0].numpy(), encoded_data.data[:, 1].numpy(), encoded_data.data[:, 2].numpy()
    values = train_data.train_labels[:200].numpy()
    for x, y, z, s in zip(X, Y, Z, values):
        c = cm.rainbow(int(255*s/9)); ax.text(x, y, z, s, backgroundcolor=c)
    ax.set_xlim(X.min(), X.max()); ax.set_ylim(Y.min(), Y.max()); ax.set_zlim(Z.min(), Z.max())
    plt.show()
  • 相关阅读:
    主流 Blog 程序集锦
    网站地图怎么做?dedecms网站地图制作方法听语音
    WOW.js – 让页面滚动更有趣
    使用网站地图六大好处
    ps快捷键
    网站地图起什么作用
    一步一步CCNA之四:路由器端口配置
    HP Linux Imaging and Printing
    雁渡寒潭四大
    spss
  • 原文地址:https://www.cnblogs.com/czz0508/p/10347065.html
Copyright © 2020-2023  润新知