• 卷积神经网络


    """
    手写字体的训练
    """
    import os
    import torch
    import torch.nn as nn
    from torch.autograd import Variable
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    
    # 超参数
    EPOCH = 1
    BATCH_SIZE = 50
    LR = 0.001
    DOWNLOAD_MNIST = False
    
    # 确认有没有mnist数据集
    if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
        DOWNLOAD_MNIST = True
    
    # 在mnist官网下载训练数据集
    train_data = torchvision.datasets.MNIST(
        root='./mnist/', # 文件下载后的保存路径
        train=True, # True代表训练数据集,False代表测试数据集
        transform=torchvision.transforms.ToTensor(), # 将下载后的数据转换为tensor格式,并将数据归一化到0到1之间                                                    
        download=DOWNLOAD_MNIST,# 是否下载数据集
    )
    
    print(train_data.train_data.size())                 # (60000, 28, 28)
    print(train_data.train_labels.size())               # (60000)
    
    # 显示出第一张图片
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # 将以上数据集分为多批
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # 测试数据集(还没有经过transform操作,其数据范围是0到255之间)
    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    
    # 将以下数据归一化到0到1之间,所以要除以255
    test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.test_labels[:2000]
    
    
    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential(         # 图片的形状为(1, 28, 28)
                nn.Conv2d(
                    in_channels=1,              # 被卷积的通道数
                    out_channels=16,            # 输出的通道数
                    kernel_size=5,              # 卷积核的大小为(5x5)
                    stride=1,                   # 卷积核的移动步数为1
                    padding=2,                  # 图片的拓展圈数
                ),                              # 输出形状为(16, 28, 28)
                nn.ReLU(),                      # 激活函数
                nn.MaxPool2d(kernel_size=2),    # 最大池化后输出形状为(16, 14, 14)
            )
            self.conv2 = nn.Sequential(         # 输入形状为(16, 14, 14)
                nn.Conv2d(16, 32, 5, 1, 2),     # 输出形状为(32, 14, 14)
                nn.ReLU(),                      # 激活函数
                nn.MaxPool2d(2),                # 最大池化后输出形状为(32, 7, 7)
            )
            self.out = nn.Linear(32 * 7 * 7, 10)   # 全连接
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)          # x的形状为(batch_size, 32, 7, 7)
            x = x.view(x.size(0), -1)  # 执行后x的形状为(batch_size, 32 * 7 * 7)
            output = self.out(x)
            return output
    
    
    cnn = CNN()
    print(cnn)  # 打印出网络结构
    
    # 优化所有的网络参数
    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
    
    #计算损失值
    loss_func = nn.CrossEntropyLoss()
    
    # 训练及测试
    for epoch in range(EPOCH):
        for step, (x, y) in enumerate(train_loader):
            b_x = Variable(x)
            b_y = Variable(y)
    
            output = cnn(b_x)
            loss = loss_func(output, b_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            if step % 50 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data[0], '| test accuracy: %.2f' % accuracy)
    
    # 打印出前十个图片的预测效果
    test_output, _ = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')
  • 相关阅读:
    搭建聊天机器人Bot Framework
    UsernamePasswordAuthenticationToken
    在JavaWeb项目中URL中字符串加密解密方案
    python自定义库文件路径
    difference between collection and association mapping in mybatis 3
    statpot:使用mongo+bootstrap+highcharts做统计报表
    Android仿微信SlideView聊天列表滑动删除效果
    Android Studio 运行、编译卡死的解决办法
    Android wear
    android实现json数据的解析和把数据转换成json格式的字符串
  • 原文地址:https://www.cnblogs.com/czz0508/p/10336794.html
Copyright © 2020-2023  润新知